
Page 1

MyPi Industrial Integrator Board NT

User Guide

Issue : 1.00

Dated : July 2023

Prepared By : Andrew O’Connell

Page 2

FEATURES

 Supports Raspberry Pi Compute Module 1/3/3+/4S variants

 1 x 10/100 LAN

 2 x USB 2.0 (external access)

 1 x uSD Card Storage (USB Interfaced)

 1 x mPCIe Interface (USB Interfaced) + SIM

 1 x Front Faced RS232 Port

 1 x Battery Backed RTC

 1 x Board ID EEPROM (Preprogrammed)

 2 x Camera Interfaces

 1 x Optional Display Interface

 1 x HDMI

 1 x Opto-Isolated Digital Input

 1 x Modular IO slot with 28 GPIO Pins

o 2/4 x SPI

o 1/5 x I2C

o 2/5 x UART

o SDIO Interface

o 3 x GPCLK

o 2 x PWM Channels

 1 x 1.6second watchdog

 2 x Bi-colour Status LEDs

 9-28V Input

 Wide -20°C to +80°C Ambient operating temperature

 Core PCB Size : 125 x 142mm

Page 3

BOARD IO FEATURES

❶

❷

❸

❺ ❻

❼

❽

❷

❿

⓫

⓬

⓭

⓮

⓯

⓰

⓱

⓲

⓳

❶ Compute Module 1/3/3+/4S Socket
❷ mPCIe Socket + Modem SIM Socket
❸ USB µSD Card Interface + Socket
❹ USB LAN9514 10/100 LAN + USB Interface
❺ 2 x USB 2.0 Ports
❻ RJ45 RS232 Port
❼ I2C DS1339U-33+ RTC + Battery Backup
❽ External Watchdog
❾ Dual Bi-colour LED
❿ GPIO IO Card interface

⓫ Power In (9-28V DC)
⓬ HDMI Out
⓭ Dual Camera Interface
⓮ Programming Mode Selector Link
⓯ µUSB CM Programming port
⓰ I2C ID EEPROM
⓱ Front IO Connector Connections
⓲ CPU Reset button
⓳ Digital Input
⓴ Power + Digital Input

❾

❹

❹

❸

⓫

⓴

❼

⓱

Page 4

HARDWARE CONFIGURATION LINKS

LED1 - ACT

This LED indicates ‘Activity’ functionality on the Pi unit, by default this indicates eMMC flash access

on the module

LED2 - POWER (3.3V)

LK6 - Compute Module Programming Mode (USB SLAVE BOOT MODE)

Fitted DISABLE Compute module programming forced as disabled

Fitted ENABLE Compute module programming enabled (fit USB programming cable in to activate)

Page 5

LK9 - RS232 Connector 5V power out

Removed DTR Line Floating

Fitted Fit to pull DTR RS232 line to +5V (default fitted)

LK1 - LED1 RED or RS232 Out

Fitted 1-2 GPIO30 Conencted to front RS232 CTS
Fitted 2-3 GPIO39 Connected to LED1 RED

Page 6

RASPBERRY PI COMPUTE MODULE PROGRAMMING

The unit as shipped is configured to allow the eMMC flash on the compute module to be re-

programmed

Demo kit units come complete with Compute modules that are pre-programmed with the demo
Raspbian OS pre-installed; this section describes how to write a new disk image to the Compute
Module.

First of all download the windows USB boot installer; this will install the device drivers as well as a
program we'll use later called RPi-Boot

Raspberry Pi RPI-BOOT Software Download Link

Connect the mini USB connector to the Windows PC using the supplied USB A to micro USB B data
cable; fit the programming mode jumper link (LK6) to EN and then power up the unit.

Windows will then show the following stages as it configures the OS:

Once that sequence has finished Windows has now installed the required drivers and you can power
off the unit for a moment whilst we get the PC side ready for the next step.

https://github.com/raspberrypi/usbboot/raw/master/win32/rpiboot_setup.exe

Page 7

Making sure you have the unit powered off start up RPi Boot, this is easiest done via the start menu,
we have found this needs to be run as ‘Administrator’ privilege mode for correct operation

When the RPi-Boot starts up it’ll sit and wait for the attached board to boot up:

Power up the unit and RPi-Boot will configure the unit to appear as a flash drive:

When done the compute module will alternate into mass storage mode (so behaving just as though
it's a USB memory stick) and windows will then recognise the module as an external drive.

Page 8

If the compute module eMMC already contains an OS Windows will recognise the FAT partition and

assign that (at least) a drive letter, this is useful in the event that a configuration error with the boot

files is made (e.g. dt-blob.bin or config.txt) and needs recovery actions to be performed.

After drive letter assignment Windows may indicate that partitions need scanning or fixing, these

can be ignored/cancelled.

There are a few different ways we can load on the OS, for simplicity we’ll cover using the

recommended OS writing software and process from the main Raspberry Pi website

This process writes a disk image, containing the partition table as well as both FAT boot partition and
Linux EXT partitions, over the entire disk.

The basic sequence we're following is:

1. Download the Win32DiskImager utility from this Download Link
2. Install and run the Win32DiskImager utility (You will need to run the utility as administrator,

right-click on the shortcut or exe file and select Run as administrator)
3. Select the OS image file you wish to write
4. Select the drive letter of the compute module in the device box (in our case F:) - Again note

that the disk image is a 1:1 of the entire disk (containing the partition table, FAT & EXT
partitions)

Be careful to select the correct drive; if you get the wrong one you can destroy the data on
the computer's hard disk!

5. Click Write and wait for the write to complete

http://sourceforge.net/projects/win32diskimager/

Page 9

Once complete power off the unit and set the USB Boot jumper link back to Disabled, and finally

remove the USB cable.

Failing to do this will prevent the USB interfaced LAN/Modem/SD Card Reader from

working when the board is rebooted due to CM's USB master being still switched over to

the programming socket and not the internal bus

The same utility can also create snapshot images of the current image config to save time, although

note this is a straight binary dump of the entire disk not just the parts with files in so the image files

end up quite big and take a long time to read/write

Created images can be cleaned and compressed using pishrink utility to speed up programming time

https://github.com/Drewsif/PiShrink/

https://github.com/Drewsif/PiShrink/

Page 10

SYSTEM GPIO MAP

GPIO Usage
/dev OS
Shortcut

Default Pull Active State

GPIO0 CAM1-SDA
 GPIO1 CAM1-SCL
 GPIO16 MCPIE-AIRPLANE pcie-wdis LOW HIGH

GPIO17 MPCIE-RESET pcie-reset LOW HIGH

GPIO18 WDOG TOGGLE
 GPIO19 WDOG EN

HIGH LOW

GPIO20 CAM0 POWER/SHUTDOWN
 GPIO21 CAM1 POWER/SHUTDOWN
 GPIO28 CAM0-SDA

 GPIO29 CAM0-SCL
 GPIO34 SD-RESET sd-disable HIGH LOW

GPIO35 LED-RED 2 led-red HIGH LOW

GPIO36 FRONT RS232
 GPIO37 FRONT RS232
 GPIO38 FRONT RS232
 GPIO39 FRONT RS232 | LED-RED 1
 GPIO44 LAN-RESET lan-disable HIGH LOW

GPIO45 LED-GREEN 2 led-red HIGH LOW

GPIO46 HDMI HPD
 GPIO47 Pi Act LED

The startup file /etc/init.d/mypi.sh exports and creates shortcut entries in /dev for easy reference

GPIO Example usage using created /dev shortcuts:

$ echo 1 >/dev/sd-disable # Reset/Disable SD Interface Chip

$ echo 0 >/dev/sd-disable # Enable SD Interface Chip

$ echo 1 >/dev/lan-disable # Reset/Disable LAN Interface Chip

$ echo 0 >/dev/lan-disable # Enable LAN Interface Chip

$ echo 1 >/dev/pcie-wdis # Disable RF output from mPCIe card

$ echo 0 >/dev/pcie-wdis # Enable RF output from mPCIe card

$ echo 1 >/dev/pcie-reset # Reset/Disable mPCIe card

$ echo 0 >/dev/pcie-reset # Enable mPCIe card

$ echo 1 >/dev/led1-red # Switch Red Status LED on

$ echo 0 >/dev/led1-red # Switch Red Status LED off

$ echo 1 >/dev/led2-green # Switch Green Status LED on

$ echo 0 >/dev/led2-green # Switch Green Status LED off

The operation of GPIO39 is set by LK1, this controls whether the GPIO is sent to the RS232 converter

(CTS) or to the bottom Red LED

Page 11

Board OS Configuration

The sample OS image provided has been produced by overlaying a series of files over a standard

Raspberry Pi Lite OS Image. The configuration files can be downloaded using the tar file linked to

below

https://drive.google.com/file/d/1vUbiLdCWlmordp_iGmQrE-gl3MKcxvDS/view?usp=sharing

https://drive.google.com/file/d/1vUbiLdCWlmordp_iGmQrE-gl3MKcxvDS/view?usp=sharing

Page 12

CM4S USB INTERFACE

The USB interface on Compute Module 4S the USB port needs to be manually enabled

This is achieved by adding the below directive to /boot/config.txt

otg_mode=1

Without this setting the board will boot without USB Connectivity i.e. Ethernet, SD card interface and
Modem will not work.

Our produced OS images have this setting enabled so there is no more to do.

For /boot firmware files dated >= 22nd August 2022, which were released with OS Kernel version
5.15.60, this has been automatically applied.

Page 13

USB SD CARD INTERFACE

The on-board micro SD Card is interfaced to the Raspberry Pi Compute Module using on-board

Microchip USB2240 SD card interface controller, providing fast access to secondary storage for

datalogging.

Configuration file /etc/udev/rules.d/8-sdcard.rules creates the below /dev shortcuts for the main

SD Card and any partitions contained (once a card is fitted)

The /dev/sdcardx reference can then be used in /etc/fstab to mount the partitions, rather than the

/dev/sdx reference to avoid clashing with other USB interfaced media

This SD card cannot be booted from however can be auto mounted at boot (via /etc/fstab) so offers

a low cost method of expanding the core eMMC filesystem

We recommend the use of industrial grade SD cards, which whist more expensive have greater

operating temperature range, on-device wear-levelling and generally greater endurance than

commercial grade parts.

For more information please see our knowledgebase article below

https://embeddedpi.com/documentation/sd-card-interface/raspberry-pi-industrial-micro-sd-cards

The SD Card interface chip gets a power up reset pulse, the below lines optionally allow you direct
control over the chip’s reset signal. Disabling the chip also reduces the system power draw.

The reset line is active low

$ echo 1 >/dev/sd-disable # Reset/Disable SD Interface Chip

$ echo 0 >/dev/sd-disable # Enable SD Interface Chip

https://embeddedpi.com/documentation/sd-card-interface/raspberry-pi-industrial-micro-sd-cards

Page 14

USB 10/100 LAN + USB CONTROLLER

Integrated on-board is an Microchip LAN9512 device, this is connected to the Raspberry Pi via the on

board USB HUB port which provides 2 additional downstream USB ports, which are brought out to

the front face USB ports.

There are two scripts that are helpful:

/usr/local/bin/resetbyauthorized.sh

This script allows you to issue a software reset command to a USB peripheral by supplying the

vendorid & productid identifiers (can be found using lsusb)

/usr/local/bin/usbpwrctl.sh

This script allows you to switch the power off/on to either/both of the front USB ports

The LAN chip gets a power up reset pulse, the below lines optionally allow you direct control over

the LAN chip reset signal.

Disabling the LAN chip also reduces the power draw of the system significantly.

Note that you should disable/bring down any LAN related interface (e.g. eth0) before disabling the

port to avoid OS related problems.

$ echo 1 >/dev/lan-disable # Reset/Disable LAN Interface Chip

$ echo 0 >/dev/lan-disable # Enable LAN Interface Chip

Page 15

USB MINI-PCIE INTERFACE

The Integrated mPCIe socket installed on the base board are wired to the below standard

Pin Signal Pin Signal

1 - 2 3.3V

3 - 4 GND

5 - 6 1.5V

7 - 8 SIM_VCC

9 GND 10 SIM_I/O

11 - 12 SIM_CLK

13 - 14 SIM_RST

15 GND 16 SIM_VPP

Mechanical Key

17 - 18 GND

19 - 20 WDIS# (GPIO23)

21 GND 22 PERST# (GPIO39)

23 - 24 3.3V

25 - 26 GND

27 GND 28 -

29 GND 30 -

31 - 32 -

33 - 34 GND

35 GND 36 USB_D+

37 GND 38 USB_D-

39 3.3V 40 GND

41 3.3V 42 LED_WWAN#

43 GND 44 LED_WLAN#

45 - 46 -

47 - 48 -

49 - 50 GND

51 - 52 3.3V

The mPCIe USB signals are connected to the on-board USB hub chip.

The WWAN/WLAN LED signals can be optionally connected to the front top green bi-colour LED, to

indicate modem network registration/data transmission status, by setting LK8 to position 2-3.

Page 16

Modem Compatibility/Operation

See the below link to pages from the main modem documentation section for details on how to

operate modems :

https://www.embeddedpi.com/documentation/3g-4g-modems

The system has been pre-installed with helper modem status script modemstat which supports

Sierra Wireless, Quectel and Simcom

See web page below for more details

https://www.embeddedpi.com/modemstat

A number of udev rules have been added to provide consistent shortcut symbolic links for easy

identification of the various ttyUSB interfaces created by the modem. These udev rule files are

contained in the /etc/udev/rules.d/modem-rules folder.

Combined versions for SIMCOM SIM7xxx and Quectel EC2x modems are pre-installed on the demo

image

Note that increasingly modems are requiring raw ip connection method to be implemented, to this

end we have added qmi-network-raw in /usr/local/bin which makes this connection type easier

along with udhcp which supports raw ip mode for obtaining an IP address once connection has been

made.

https://www.embeddedpi.com/documentation/3g-4g-modems
https://www.embeddedpi.com/modemstat

Page 17

QMI Network Connection Example

Page 18

QUECTEL-CM Example

Quectel Modems have a utility provided by Quectel to manage the connection process and which

will automatically configure any raw-ip settings

First install the all-in-one quectel-cm connection helper program; this will automatically configure

any raw-ip settings

https://github.com/mypiandrew/quectel-cm/releases/download/V1.6.0.12/quectel-CM.tar.gz

The command has the below syntax

quectel-CM [-s [apn [user password auth]]]

 [-p pincode] [-f logfilename] -s [apn [user password auth]]

Example 1: ./quectel-CM

Example 2: ./quectel-CM -s pp.vodafone.co.uk

Example 3: ./quectel-CM -s internet web web 0 -p 1234 -f modemconnect.log

Note that this is a non-exiting process so will not automatically fork and run in the background

https://drive.google.com/file/d/1S7-o7-u4StUJoAfwig6BaepBhLSmQsDa/view?usp=sharing

Page 19

Sample Connection output, note the fall back to raw-ip is automatic.

Killing the process or issuing Ctrl-C results in the connection to be disconnected and interface

disabled.

Page 20

mPCIe IO Cards

Also available are our range of pre-certified RF modules :

 LoRa (Microchip RN2483/RN2903) or RAK Lora Concentrators

 Bluetooth 4.0 BLE (Silicon Labs/BlueGiga BLE112)

 Bluetooth 5 (Laird BL652)

 enOcean TCM310

 ZIGBEE/802.15.4 (TI CC2652 ZIGBEE 3.0)

 XBEE

These all feature an FTDI230X USB to UART chip and so appear automatically as a standard serial

port ready to run with minimal configuration needed, so offer a fast development cycle.

In order to make the ttyUSBx serial port for the mPCIe cards above constantly easy to identify we

use a udev rule to help us, this is called 10-ftdi-usbserial.rules and is located /etc/udev/rules.d/

This udev rule creates a symlink for the FTDI ttyUSBx serial port called /dev/ttyS2

For more information on how each card works please see the respective documentation page on the

website.

Page 21

COM PORTS

Whilst the CM4S has multiple UARTs in this section we will focus on the core 2 UARTs that are

applicable to all CM versions.

UART0&1 are direct from the RPi module and available on the GPIO IO card slot

UART0 can also be directed to appear as an RS232 port on the front face of the board instead of the

GPIO Slot

Further serial ports can be added via either the mPCIe port or plugging additional adapters into the

front USB ports.

Name OS Port Type RTS/CTS?

UART0 /dev/ttyAMA0 PL011 Full UART Yes**

UART1 /dev/ttyS0 Mini UART No

USB-SERIAL1 /dev/ttyS2* mPCIe FT230XS USB UART Yes

USB-SERIAL2 /dev/ttyS3* Top USB Port external FTDI USB Serial Adapter Yes

USB-SERIAL3 /dev/ttyS4* Bottom USB Port external FTDI USB Serial Adapter Yes
* Will appear as a ttyUSBx port, udev rules will create /dev/ttySx symlink short-cuts – see /etc/udev/rules.d
** RTS/CTS lines optional and configured via device-tree overlays

Note that UART1 was originally intended as a serial console rather than a full featured UART, as a

result it has a few quirks in the settings it can reliably use (including baud rates being affected by the

clock rate of the CPU). For this reason care should be taken to assess its suitability for usage, for

more information see this web page : HERE

UART0 is the preferred choice when using for serial communications between devices due to having

a more complete feature set.

The GPIO pins UART0 & 1 appear on are user-definable via device tree overlays

GPIO ALT0 ALT1 ALT2 ALT3 ALT4 ALT5

14 TX0 TX1

15 RX0 TX1

30 CTS0

31 RTS0

32 TX0 TX1

33 RX0 RX1

36 TX0

37 RX0

38 RTS0

39 CTS0

http://classic.lavalink.com/2012/04/more-on-raspberry-pi-serial-ports/

Page 22

The standard setup of the system assigns UART0 to pins 32/33, UART1 to 14/15

The lines below in /boot/config.txt configure the system to this setup

UART0 Configuration Options

UART0 can be configured in one of four modes, depending on the use case, only one mode at a time

can be used

MODE 1 : Enable TX/RX on pins 32/33 of IO Card Slot

dtoverlay=uart0,txd0_pin=32,rxd0_pin=33,pin_func=7

MODE 2 : Enable CTS/RTS/TX/RX on pins 30/31/32/33 of IO Card Slot

dtoverlay=uart0-full

MODE 3 : Assign to Front Face RS232 Port (RX/TX Only)

dtoverlay=uart0,txd0_pin=36,rxd0_pin=37,pin_func=6

Mode 4 : Assign to Front Face RS232 Port with full RX/TX/RTS/CTS

dtoverlay=uart0-full-front

NOTE : uart0-full and uart0-full-front are non-standard overlays that enable the additional RTS/CRS

lines for the com port. The source files can be found in the /root/device-tree folder

UART1 Configuration Options

UART1 can be configured in one of two modes, depending on the use case, only one mode at a time

can be used

MODE 1 : Enable ttyS0 TX/RX to pins 14/15

dtoverlay=uart1,txd1_pin=14,rxd1_pin=15

MODE 2 : Enable ttyS0 TX/RX to pins 32/33

** ONLY IF UART0 IS USED IN MODE 3/4 **

dtoverlay=uart1,txd1_pin=32,rxd1_pin=33,pin_func=6

Page 23

Pi UART Port Order Fix

By default the Raspberry Pi Firmware will swap the assignment of the two UART ports to match the

usage of the integrated Bluetooth receiver on Pi3+ models

Unless changed can cause problems with unintended interaction between the two ports,

especially if the serial console is enabled.

To fix the issue use the overlay below

dtoverlay=uart_swap

The source file for the non-standard overlays can be found in /root/device-tree

Correct operation can then be confirmed by using the checks below

Note that serial0 (which is the console port) is correctly allocated to ttyS0

Serial Console

To remove the serial console edit /boot/cmdline.txt and remove console=serial0,115200 from the

front

Next disable the system serial console service and reboot the unit

systemctl disable serial-getty@ttyS0.service

Page 24

RJ45 Serial Port

The front RJ45 RS232 Serial port is wired as below table shows,

This can either be converted back to a D9-M Serial connector as the below wiring scheme shows

RJ45 Pin Signal Direction D9-M Pin Signal

1 RTS 7 RTS

2 5V / N.C. – LK9 link 4 DTR

3 TX 3 TX

4 GND - 5 GND

5 GND - - N/C

6 RX 2 RX

7 - - 6 DSR

8 CTS 8 CTS

- - - 9 RI

- - - 1 DCD

Direction shown is from the PCB Connector

Alternatively use compatible Cisco 72-3383-01 RJ45 - DB9F (Cross-Over/Null Modem) Console Cable:

 RJ45 Pin Signal Direction D9-F Pin Signal

1 RTS 8 CTS

2 5V / N.C. – LK9 link 6 DSR

3 TX 2 RX

4 GND - 5 GND

5 GND - 5 N/C

6 RX 3 TX

7 - - 4 DTR

8 CTS 7 RTS

Direction shown is from the PCB Connector

Pin Signal

1 RTS

2 5V / N.C. – LK9 link

3 TX

4 GND

5 GND

6 RX

7 -

8 CTS

Page 25

I2C REAL TIME CLOCK

A DS1338Z-33+ Real Time Clock with battery backup cell is integrated onto the board, this is
configured by the below device tree overlay line in /boot/config.txt

dtoverlay=i2c-rtc,ds1307,addr=0x68

Further OS integration to remove the fake-hwclock functionality, and ensure the system

reads/writes to the hwclock, has also been done.

A good primer on this topic can be found here :

https://learn.adafruit.com/adding-a-real-time-clock-to-raspberry-pi/set-rtc-time

https://learn.adafruit.com/adding-a-real-time-clock-to-raspberry-pi/set-rtc-time

Page 26

I2C USER EEPROM

A 256Byte EEPROM for user ID storage

The lower 128Byte has read/write access for user storage, the first 4 hex bytes have been

programmed with an ID code visible on the barcoded sticker affixed to the PCB.

The upper 128byte is read only with the last 32bits (6 hex bytes) containing a unique ID code.

The EEPROM’s id is 0x50 with shadow addresses at 0x51-0x57

The EEPROM can be accessed for read/write operations using i2c-tools utilities, such as i2cdump

Page 27

For convenience a script to create two bash environment variables has been created in

/etc/profile.d

setup-e2id-vars.sh creates e2idsettings.sh on first run

These environment variables can be used in scripting by root user

Page 28

Also included on the factory Raspbian OS image is the eeprog command line utility that can also be

used to read/write the EEPROM (source code in /root/eeprom)

Page 29

WATCHDOG

The on-board external 1.6 second watchdog is a single chip part provided by ST STWD100PYW83F,

the reset output of this part is connected to the Raspberry Pi Compute module.

This is provided to give an extra layer of resilience over a system lockup in the event that the user

considers the RPi on-chip watchdog is unsuitable for their application.

The external watchdog device is driven by GPIO19 (/WD Enable) and GPIO18 (/WD Input), by default

the watchdog is disabled as GPIO19 is pulled high by default pin state.

Once the watchdog is enabled the WD Input pin on the device must be togged H-L-H at least once

per watchdog time-out period (1.6 seconds) and the low level pulse period must be >1uS long for the

watchdog pulse to be valid.

If the device sees a valid low-to-high transition on the input pin the internal 1.6 second countdown

timer is reset and restarted.

If the device does not see a valid input pulse within the watchdog time out period it will pull the RPi

CPU module reset line low, which will also cause GPIO19 (/WD Enable) to be pulled high (as the Pi

CPU resets) and so disable the watchdog allowing the system to boot without further time out reset

occurring.

With this in mind if the external watchdog is not used a hard reset of the Pi module can be effected

by setting WD enable line high and then not toggling the watchdog input line.

The reset lines for all other devices (including mPCIe) are available via separate, independent GPIO

lines. The other on board devices have RC circuits to provide an initial power-up reset pulse.

When the system hard resets in this manner all GPIO lines will revert back to their default state,

which will have implications for any GPIO driven IO devices.

Full datasheet for watchdog part: Download Link

GPIO line /dev shortcuts for direct control over these lines can be enabled via the script in

/root/ext-watchdog/wd-setup.sh

http://www.st.com/resource/en/datasheet/stwd100.pdf

Page 30

External Watchdog OS Integration

Integrated into the Raspbian kernel and OS there are pre-built utilities for configuring and managing

watchdogs, in this example we will show how to configure the OS such that a file's last update

timestamp will trigger a watchdog time out.

In this configuration if the target file is not updated the system will attempt an “orderly” reset as it

performs some basic "clean-up" tasks prior to finally stopping the watchdog input line toggling, and

so causing the Raspberry Pi Compute Module’s reset line (aka RUN pin) to be momentarily pulled

low by the watchdog device resulting in a hard reset.

The watchdog system is configured by 3 main files

- A device tree configuration file to enable the GPIO Watchdog timer /dev/watchdog1

- A systemd service file /lib/systemd/system/watchdog.service

- The conditional check options specified in /etc/watchdog.conf

Start by installing the requisite files and configuring them

Then add the below line to the end of /boot/config.txt

dtoverlay=ext-watchdog

Page 31

Copy the new configuration files to the target folders

The watchdog service file has been altered as shown below to start the watchdog process, then

enable the watchdog and during boot

Page 32

The configuration we’re using to determine both the watchdog device the system should be using

and the test for system time out is setup in /etc/watchdog.conf

With these files in place reboot the unit so the changes take effect

Page 33

On reboot you should be able to issue the commands shown below to check the services have

started correctly.

Page 34

If the file we have configured as the test for watchdog time out is not written to for a period of 3 x

the change value (in seconds) then the system will attempt a managed restart, by shutting as many

services down as possible etc and then stopping the watchdog timer, causing a hard reset

At any point up to this final time out writing/touching the file will reset the counter.

To test the system operation in the event of a kernel fault run the below to provoke a kernel panic

echo c > /proc/sysrq-trigger

Alternately a recursive "fork bomb" which causes all CPU resources to be used can be provoked

using the command below

:(){ :|:& };:

Page 35

GPIO CARD SLOT

The IO Card slot on the board supports a variety of interface cards

Note that the green 8 way plug in screw terminal connector is uncommitted and is defined by the

signals connected to IO-OUT on the 20way connector giving rise to a truly flexible IO interface

solution.

Template files for this card can be downloaded from the website

https://embeddedpi.com/documentation/mypi-io-card-pcb-template

Note that ‘double height’ IO cards require 19mm headers minimum to clear the RJ45 COM port

https://embeddedpi.com/documentation/mypi-io-card-pcb-template

Page 36

J9 Pin Out

Pin Signal Pin Signal

1 GND 2 +5V

3 GND 4 +3.3V

5 GPIO2 6 GPIO12

7 GPIO3 8 GPIO13

9 GPIO4 10 GPIO25

11 GPIO6 12 GPIO26

13 GPIO7 14 GPIO27

15 GPIO8 16 GPIO30

17 GPIO9 18 GPIO31

19 GPIO10 20 GPIO32

21 GPIO11 22 GPIO33

23 GPIO14 24 GPIO24

25 GPIO15 26 GPIO40

27 GPIO5 28 GPIO41

29 GPIO23 30 GPIO42

31 GPIO22 32 GPIO43

33 GND 34 +3.3V

These GPIO Lines Differ From Older CM3 Integrator Board Version

J10 Pin Out

Pin Signal Pin Signal

1 - 2 -

3 IO-OUT 1 4 IO-OUT 1

5 IO-OUT 2 6 IO-OUT 2

7 IO-OUT 3 8 IO-OUT 3

9 IO-OUT 4 10 IO-OUT 4

11 IO-OUT 5 12 IO-OUT 5

13 IO-OUT 6 14 IO-OUT 6

15 IO-OUT 7 16 IO-OUT 7

17 IO-OUT 8 18 IO-OUT 8

19 - 20 -

GPIO

The below website provides information on the different low level peripherals integrated into the

GPIO lines

Compute Module 1-3+ = https://elinux.org/RPi_BCM2835_GPIOs

Compute Module 4S+ = https://elinux.org/RPi_BCM2711_GPIOs

The raspi-gpio tool provides information and the ability to directly manipulate GPIO lines (bypassing

the OS) for debug purposes.

https://elinux.org/RPi_BCM2835_GPIOs
https://elinux.org/RPi_BCM2711_GPIOs

Page 37

IO Connector Pinout Peripherals - CM3/CM3+

 Changed From Older CM3 MyPi Integrator Board Version

Pin Signal ALT0 ALT3 ALT4 ALT5 Pin Signal ALT0 ALT3 ALT4 ALT5

1 GND

2 +5V

3 GND

4 +3.3V

5 GPIO2 SDA1 6 GPIO12 PWM0_0

7 GPIO3 SCL1 8 GPIO13 PWM0_1

9 GPIO4 GPCLK0 10 GPIO25 SD0_DAT1 SD1_DAT1

11 GPIO6 GPCLK2 12 GPIO26 SD0_DAT2 SD1_DAT2

13 GPIO7 SPI0-CE1 14 GPIO27 SD0_DAT3 SD1_DAT3

15 GPIO8 SPI0-CE0 16 GPIO30 CTS-0 CTS-1

17 GPIO9 SPI0-MISO 18 GPIO31 RTS-0 RTS-1

19 GPIO10 SPI0-MOSI 20 GPIO32 TXD-0 TXD-1

21 GPIO11 SPI0-SCLK 22 GPIO33 RXD-0 RXD-1

23 GPIO14 TXD-0 TXD-1 24 GPIO24 SD0_DAT0 SD1_DAT0

25 GPIO15 RXD-0 RXD-1 26 GPIO40 PWM1_0 SPI2-MISO TXD-1

27 GPIO5 GPCLK1 28 GPIO41 PWM1_1 SPI2-MOSI RXD-1

29 GPIO23 SD0_CMD SD1_CMD 30 GPIO42 GPCLK1 SPI2-SCLK RTS-1

31 GPIO22 SD0_CLK SD1_CLK 32 GPIO43 GPCLK2 SPI2-CE0 CTS-1

33 GND 34 +3.3V

Page 38

IO Connector Pinout Peripherals - CM4S

Changed From Older CM3 Integrator Board Version

Pin Signal ALT0 ALT3 ALT4 ALT5 Pin Signal ALT0 ALT3 ALT4 ALT5

1 GND

2 +5V

3 GND

4 +3.3V

5 GPIO2 SDA1 SDA3 6 GPIO12 PWM0_0 SPI5-CE0 TXD-5 SDA5

7 GPIO3 SCL1 SCL3 8 GPIO13 PWM0_1 SPI5-MISO RXD-5 SCL5

9 GPIO4 GPCLK0 SPI4-CE0 TXD-3 SDA3 10 GPIO25 SD0_DAT1 SD1_DAT1 SPI4-CE1

11 GPIO6 GPCLK2 SPI4-MOSI CTS-3 SDA4 12 GPIO26 SD0_DAT2 SD1_DAT2 SPI5-CE1

13 GPIO7 SPI0-CE1 SPI4-SCLK RTS-3 SCL4 14 GPIO27 SD0_DAT3 SD1_DAT3

15 GPIO8 SPI0-CE0 I2CSL CE_N TXD-4 SDA4 16 GPIO30 CTS-0 CTS-1

17 GPIO9 SPI0-MISO I2CSL SDI RXD-4 SCL4 18 GPIO31 RTS-0 RTS-1

19 GPIO10 SPI0-MOSI I2CSL SDA CTS-4 SDA5 20 GPIO32 TXD-0 TXD-1

21 GPIO11 SPI0-SCLK I2CSL SCL RTS-4 SCL5 22 GPIO33 RXD-0 RXD-1

23 GPIO14 TXD-0 SPI5-MOSI CTS-5 TXD-1 24 GPIO24 SD0_DAT0 SD1_DAT0

25 GPIO15 RXD-0 SPI5-SCLK RTS-5 RXD-1 26 GPIO40 PWM1_0 SPI2-MISO TXD-1

27 GPIO5 GPCLK1 SPI5-MISO RXD-3 SCL3 28 GPIO41 PWM1_1 SPI2-MOSI RXD-1

29 GPIO23 SD0_CMD SD1_CMD SCL6 30 GPIO42 GPCLK1 SPI2-SCLK RTS-1

31 GPIO22 SD0_CLK SD1_CLK SDA6 32 GPIO43 GPCLK2 SPI2-CE0 CTS-1

33 GND 34 +3.3V

Page 39

DUAL CAMERA

Dual Camera support has the below pre-requisites

1. System config.txt configuration settings

Enable these two lines as shown below

2. System dt-blob.bin file configuring the camera setup

This file is located in /boot and configures the control lines and interfaces used for camera setup

With this in place the command below should report back accordingly.

Note : If 2 cameras are configured (as per default image) but only 1 camera is connected it will

always be detected as camera 0 regardless of which physical port the camera is plugged into.

See device tree .dts source file in /root/devicetree for details on setup

Page 40

J7 – CAM0 Connector

J6 – CAM1 Connector

Pin Signal

1 GND

2 CAM0_DN0

3 CAM0_DP0

4 GND

5 CAM0_DN1

6 CAM0_DP1

7 GND

8 CAM0_CN

9 CAM0_CP

10 GND

11 GPIO20 (Power Control)

12 NC

13 I2C0 SCL (GPIO29)

14 I2C0 SDA (GPIO28)

15 3.3V

Pin Signal

1 GND

2 CAM1_DN0

3 CAM1_DP0

4 GND

5 CAM1_DN1

6 CAM1_DP1

7 GND

8 CAM1_CN

9 CAM1_CP

10 GND

11 GPIO21 (Power Control)

12 NC

13 I2C0 SCL (GPIO1)

14 I2C0 SDA (GPIO0)

15 3.3V

Page 41

LCD OUT

The unit can drive the official Raspberry Pi LCD display, to do this the below connector part needs

fitting to the solder side J22 connector:

1mm Pitch SMT 15 Way Right Angle Female FPC Connector Molex 52271-1579

This fits to J20 underneath the Camera connector

The display should be powered from +5V and 0V lines from J4, connect these to the +5V and 0V lines

on the display board.

Do not power the LCD board from the front panel side USB connector as this interface isn't usually

enabled early enough in the boot cycle.

The display connects up as standard using the same type of FFC cable as normal, you may find a

longer length of cable is helpful to locate the display and board apart from each other.

The only extra software configuration needed is the below section in the system device tree file:

These lines need adding/enabling in the system dt-blob-dual-cameras.dts file

 pin_define@DISPLAY_SDA { type = "internal"; number = <28>; };
 pin_define@DISPLAY_SCL { type = "internal"; number = <29>; };

 pin_define@DISPLAY_I2C_PORT { type = "internal"; number = <0>; };

The source device tree file (dt-blob-dual-cameras.dts) can be found in /root/devicetree

With the section above in place recompile the device tree file with the below :

dtc -I dts -O dtb -o dt-blob.bin dt-blob-dual-cameras.dts && cp dt-blob.bin /boot

On next reboot the display will take over from the HDMI output and display the standard rainbow

output at boot any system messages.

Page 42

POWER DRAW NOTES

Power consumption was measured in different modes to give guidance

Configuration #1

 No Cameras

 HDMI Connected

 No Modem

 PSU 12V

 LAN Connected

Readings

Mode Power Draw

Steady State 182mA

 tvservice -o 175mA

echo 1 >/dev/sd-disable 142mA

echo 1 >/dev/lan-disable 75mA

Configuration #1

 No Cameras

 HDMI Connected

 Modem Connected (Quectel EC21V) With SIM but idle

 PSU 12V

 LAN Connected

Readings

Mode Power Draw

Steady State 200mA

 tvservice -o 190mA

echo 1 >/dev/sd-disable 158mA

echo 1 >/dev/pcie-reset 158mA

echo 1 >/dev/lan-disable 96mA

LAN Connection should be brought down before LAN Chip is disconnected to avoid OS issues.

Note that the mPCIe Slot (Modem) and the SD card controller are both connected via the USB

interface on the LAN chip.

When LAN chip is active removing LAN cable causes a drop of approximately 20mA

Page 43

MIGRATION FROM OLDER CM3 INTEGRATOR BOARD

Migration from our older CM1/3/3+ Integrator board comprises of a small amount of GPIO lines that

have changed function. This has been done to improve functionality and enhance compatibility with

the CM4S feature set.

GPIO Configuration Changes

Function Shortcut OLD GPIO NEW GPIO

Status LED (GREEN) /dev/led-green 36 45

mPCIe Wireless Disable/Airplane /dev/pcie-wdis 39 16

mPCIe Reset /dev/pcie-reset 23 17

CAM0 Power Enable

22 20

CAM1 Power Enable

21 21

Hardware Watchdog Enable

28 19

Hardware Watchdog Input

29 18

 IO SLOT-24

37 24

IO SLOT-26

38 40

IO SLOT-27

16 5

IO SLOT-29

17 23

IO SLOT-31

18 22

 Front RS232 Port TX ttyS1 (for ttyUSBx) USB-TX (ttyUSBx) GPIO36 (ttyAMA0)

Front RS232 Port RX ttyS1 (for ttyUSBx) USB-RX (ttyUSBx) GPIO37 (ttyAMA0)

Front RS232 Port RTS ttyS1 (for ttyUSBx) USB-RTS (ttyUSBx) GPIO38 (ttyAMA0)

Front RS232 Port CTS ttyS1 (for ttyUSBx) USB-CTS (ttyUSBx) GPIO39 (ttyAMA0)

Functionality Changed/Removed

Function Change Type Notes

Audio Out Removed GPIO40/45 reused for board IO

Camera LED Indicator Removed GPIO4/5 reused for board IO

Raspberry Pi HAT Connector Removed Various GPIO reused for board IO

Power Connector DIO Changed
Changed from GPIO20 to optional connection to
GPIO43

Page 44

RASPBERRY PI DOCUMENTATION

Raspberry Pi have produced a comprehensive knowledge base on how to configure and control

various aspects of the Compute Module and it’s OS.

https://www.raspberrypi.com/documentation

A white paper on how to transition from Compute Module 3 to Compute Module 4S has been written

by the Raspberry Pi Team and can be downloaded from the link below

https://pip.raspberrypi.com/categories/685-whitepapers-app-notes/documents/RP-003478-

WP/Transitioning-from-CM-3-to-CM-4S.pdf

https://www.raspberrypi.com/documentation
https://pip.raspberrypi.com/categories/685-whitepapers-app-notes/documents/RP-003478-WP/Transitioning-from-CM-3-to-CM-4S.pdf
https://pip.raspberrypi.com/categories/685-whitepapers-app-notes/documents/RP-003478-WP/Transitioning-from-CM-3-to-CM-4S.pdf

Page 45

SCHEMATICS

A reduced schematic set can be provided on request, please contact your technical support

representative for more details.

Page 46

DIMENSIONS

Below drawing shows the location of the mounting holes, please contact sales for CAD data.

Page 47

CHASSIS GROUND

With regards to the Integrator Board the following connections share a Chassis Ground net, which is

separate from the main 0V line.

- 4 x M3.5 Mounting holes

- LAN RJ45 Shield

- USB Shield

- COM RJ45 Shield

R67 position on the underside of the PCB provides an easy access point to either connect Chassis

Ground directly to the main power supply DC IN 0V via a solder link, or fitting an 0805 size

component.

The connection of R67 is dependent on the enclosure design and how the overall chassis ground is

dealt with at a system level.

Connecting the chassis ground net to 0V provides termination for the LAN port and also ESD

discharge route back to the power connector rather than through the mainboard ground, so is

recommended.

Page 48

FCC Class A Statement

This equipment has been tested and complies with the limits for a Class A digital device, pursuant to
Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful
interference when the equipment is operated in a commercial environment. This equipment
generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance
with the instruction manual, may cause harmful interference to radio communications. Operation of
this equipment in a residential area is likely to cause harmful interference, in which case the user will
be required to correct the interference at his own expense.

Properly shielded and grounded cables and connectors must be used in order to meet FCC emission
limits. Embedded Micro Technology is not responsible for any radio or television interference caused
by using other than recommended cables and connectors or by unauthorized changes or
modifications to this equipment. Unauthorized changes or modifications could void the user's
authority to operate the equipment.

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two
conditions: (1) this device may not cause harmful interference, and (2) this device must accept any
interference received, including interference that may cause undesired operation

