
Page 1

MyPi Industrial CM4 Integrator Board

User Guide

Issue : 2.1

Dated : June 2023

Prepared By : Andrew O’Connell

Page 2

FEATURES

 Supports All Raspberry Pi Compute Module 4 variants
 1 x 10/100/1000 LAN
 1 x 10/100 LAN
 2 x USB 2.0 (external access)
 1 x uSD Card Storage (USB Interfaced)
 1 x mPCIe Interface (USB Interfaced) + SIM
 1 x SPI Infineon SLB9670 TPM 2.0
 1 x Battery Backed RTC
 1 x Board ID EEPROM (Preprogrammed)
 2 x Camera Interfaces
 1 x HDMI
 1 x Opto-Isolated Digital Input
 1 x Modular IO slot with 28 GPIO Pins

o 3 x SPI
o 5 x I2C
o 4 x UART
o SDIO Interfaces
o 3 x GPCLK
o 2 x PWM Channels

 1 x Optional 60second watchdog (active from power up/boot)
 1 x Temperature activated fan control (same as Pi CMIO4 board)
 2 x Bi-colour user LEDs
 9-28V Input
 Wide operating temperature range, -20°C to +80°C with standard CM4 and -40°C to +80°C with

extended temp models

Page 3

BOARD IO FEATURES

❶
❷ ❸ ❹

❺ ❻ ❼

❽

❽ ❷
❿

⓫

⓬

⓭

⓭

⓮

⓯

⓰ ⓱

⓱

⓱

⓲

⓲

⓳

❼

⓴

❶ Compute Module 4 Socket
❷ mPCIe Socket + Modem SIM Socket
❸ SPI Interfaced SLB9670 TPM 2.0
❹ 60 Second Watchdog + Enable Links
❺ I2C GPIO Expander
❻ I2C Serial EEPROM
❼ I2C EMC2301 Fan Controller
❽ USB µSD Card Interface + Socket
❾ Pi Status LEDs + Mode Links
❿ Dual RPi Camera Sockets

⓫ HDMI Out
⓬ I2C DS1338Z RTC + Coin Cell Backup Battery
⓭ USB LAN9514 10/100 LAN + USB Interface
⓮ 2 x USB 2.0 Ports
⓯ Pi Gigabit 10/100/1000 Interface
⓰ Dual Bi-colour LED
⓱ GPIO IO Card interface + Front Connector
⓲ Power In (9-28V DC)
⓳ Power In Digital Input
⓴ µUSB CM4 Programming port

❾

❹

❹

Page 4

HARDWARE CONFIGURATION LINKS

LED - RESET

This LED indicates when the Pi unit is in reset condition and has asserted an external reset signal,
which is routed to parts 3, 8 & 13

LED - PWR

This GPIO driven LED indicates ‘power’ functionality on a Raspberry Pi and can be repurposed for
general usage, signal also connected the bottom red LED.

LED - ACT

This LED indicates ‘Activity’ functionality on the Pi unit, by default this indicates eMMC flash access
on the module, but can be reassigned to indicate other status signals.

LK1 - Boot Mode

Fitted Forces CM4 module into eMMC programming or EEPROM Firmware update mode

Open Default, boots as normal according to EEPROM settings

LK4 - BT DIS

Fitted Forces CM4 module to disable Bluetooth RF Output

Open Default

Page 5

LK2 - WIFI DIS

Fitted Forces CM4 module to disable WiFi RF Output

Open Default

LK3 - EEPROM DIS

Fitted Indicates to CM4 module to disable EEPROM
(Facility not enabled in firmware by default)

Open Default

LK5 - WD EN

Fitted Connect External Watchdog Enable Line to GPIO16

Open Default

LK7 - WDI

Fitted Connect External Watchdog Input Line to GPIO17

Open Default

Page 6

LK6 - WATCHDOG RESET OUT

Fitted Connect External Watchdog Reset Out to CM4 RUN/RESET Line

Open Default

Page 7

RASPBERRY PI COMPUTE MODULE PROGRAMMING

The unit as shipped is configured to allow the eMMC flash on the compute module to be re-
programmed without removing the PCB from the enclosure.

Units come pre-programmed with the demo Raspbian OS pre-installed, this section describes how to
write a new disk image to the Compute Module.

First of all download the windows USB boot installer, this will install the device drivers as well as a
program we'll use later called RPi-Boot

Raspberry Pi RPI-BOOT Software Download Link

Connect the mini USB connector to the Windows PC using the supplied USB A to micro USB B data
cable, fit the boot mode jumper link (LK1) and then power up the unit.

Windows will then show the following stages as it configures the OS :

Once that sequence has finished Windows has now installed the required drivers and you can power
off the unit for a moment whilst we get the PC side ready for the next step.

Page 8

Making sure you have the unit powered off start up RPi Boot, this is easiest done via the start menu,
we have found this needs to be run as ‘Administrator’ privilege mode for correct operation

When the RPi-Boot starts up it’ll sit and wait for the attached board to boot up :

Power up the unit and RPi-Boot will configure the unit to appear as a flash drive :

When done the compute module will alternate into mass storage mode (so behaving just as though
it's a USB memory stick) and windows will then recognise the module as an external drive.

Page 9

If the compute module eMMC already contains an OS Windows will recognise the FAT partition and
assign that (at least) a drive letter, this is useful in the event that a configuration error with the boot
files is made (e.g. dt-blob.bin or config.txt) and needs recovery actions to be performed.

After drive letter assignment Windows may indicate that partitions need scanning or fixing, these
can be ignored/cancelled.

There are a few different ways we can load on the OS, for simplicity we’ll cover using the
recommended OS writing software and process from the main Raspberry Pi website

This process writes a disk image, containing the partition table as well as both FAT boot partition and
Linux EXT partitions, over the entire disk.

The basic sequence we're following is :

1. Download the Win32DiskImager utility from this Download Link
2. Install and run the Win32DiskImager utility (You will need to run the utility as administrator,

right-click on the shortcut or exe file and select Run as administrator)
3. Select the OS image file you wish to write
4. Select the drive letter of the compute module in the device box (in our case F:) - Again note

that the disk image is a 1:1 of the entire disk (containing the partition table, FAT & EXT
partitions)

Be careful to select the correct drive; if you get the wrong one you can destroy your data
on the computer's hard disk!

5. Click Write and wait for the write to complete

Page 10

CM4 BOOT EEPROM FIRMWARE UPDATE

On the CM4 it is not possible to update the boot firmware EEPROM from the command line

To find the current boot loader version run vcgencmd bootloader_version

For best USB and Camera support we recommend installing version July 6th 2021 or later

To update the firmware on a CM4 device the same rpiboot program is used, but with a different
syntax to usual. This directs the system to push a different set of files to the CM4 device containing
the firmware update files.

Fit the boot mode link and connect up the microUSB programming cable and run rpiboot as shown
in the screenshot below. This process takes a short amount of time and once completed the HDMI
output will indicate a green screen with rapidly blinking status LED to show success.

To change/update the firmware version files of your install replace the ‘recovery’ folder on your
local machine with that of the ‘recovery’ folder from the main github repo below

https://github.com/raspberrypi/usbboot

Page 11

CM4 SECURE BOOT

Secure boot facilities on the CM4 are currently in beta release, see below website link for examples
and notes on how to create a signed boot image

https://github.com/raspberrypi/usbboot#secure-boot---image-creation

See also TPM Hardware Security Module notes following

Page 12

SYSTEM GPIO

In order to minimise CM4 GPIO line usage an I2C interfaced PCA9536 GPIO expander has been
included

These present as gpio500-503 on the OS and are configured via the system device tree overlays :

I2C Bus (Note : Also need to add i2c-dev to /etc/modules)
dtparam=i2c_arm=on
dtoverlay=pca953x,addr=0x41,pca9536

A bash script /etc/init.d/mypi-init.sh which is called from /etc/rc.local during boot-up which creates
the below symbolic links for quick access in /dev

mpcie-wdisble -> /sys/class/gpio/gpio500/value
mpcie-reset -> /sys/class/gpio/gpio501/value
led2-red -> /sys/class/gpio/gpio502/value
led2-green -> /sys/class/gpio/gpio503/value
led1-red -> /sys/class/leds/led1/brightness
rtc_nvram -> /sys/class/rtc/rtc0/device/nvram
wd-enable -> /sys/class/gpio/gpio16/value
wd-input -> /sys/class/gpio/gpio17/value

Example usage :

$ echo 1 >/dev/led1-red
$ echo 0 >/dev/led1-red

$ echo 1 >/dev/led2-green
$ echo 0 >/dev/led2-green

$ echo 1 >/dev/mpcie-reset
$ echo 0 >/dev/mpcie-reset

echo ‘battery backed up ram’ > /dev/rtc_nvram
cat /dev/rtc_nvram
battery backed up ram

Board OS Configuration
The sample OS image provided has been produced by overlaying a series of files over a standard
Raspberry Pi Lite OS Image. The configuration files can be downloaded using the tar file linked to
below

https://drive.google.com/file/d/1b8HxL6FkDFo-N_3SfSyCkyBcHYBUnngL/view?usp=sharing

Page 13

USB INTERFACE

There are two critical settings that determine the USB controller active on the CM4, without these
steps the system will either disable the USB port or enable the low bandwidth port controller.

1. Firmware version

This should be version dated July 6th 2021 or later, needed to enable the internal controller

2. Config.txt setting

otg_mode=1 should be included in the configuration file to select the xhci-hcd controller

Correctly setup the system will report the root hub as being an xhci-hcd device as shown below

Page 14

USB SD CARD INTERFACE

The on-board micro SD Card is interfaced to the Raspberry Pi Compute Module using on-board
Microchip USB2240 SD card interface controller, this provides fast access to secondary storage for
datalogging.

configuration file /etc/udev/rules.d/8-sdcard.rules creates the below /dev shortcuts for the main
SD Card and any partitions contained

This SD card cannot be booted from however can be auto mounted at boot (via /etc/fstab) so offers
a low cost method of expanding the core eMMC filesystem

We recommend the use of industrial grade SD cards, which whist more expensive have greater
operating temperature range, on-device wear-levelling and generally greater endurance than
commercial grade parts.

For more information please see our knowledgebase article below

https://embeddedpi.com/documentation/sd-card-interface/raspberry-pi-industrial-micro-sd-cards

A hardware reset of the USB2240 device is asserted at reboot/power up by the Compute Module

Page 15

USB 10/100 LAN + USB CONTROLLER

Integrated on-board is an Microchip LAN9514 device, this is connected to the Raspberry Pi via USB
port and provides 4 additional downstream USB ports, two of which are used for the on-board
mPCIe interface and USB2240 SD Card controller and the remaining two are brought out to the front
face USB ports.

There are two scripts that are helpful:

/usr/local/bin/resetbyauthorized.sh

This script allows you to issue a software reset command to a USB peripheral by supplying the
vendorid & productid identifiers

/usr/local/bin/usbpwrctl.sh

This script allows you to switch the power off/on to either/both of the front USB ports

A hardware reset of the LAN9514 device is asserted at reboot/power up by the Compute Module

Page 16

USB MINI-PCIE INTERFACE

The Integrated mPCIe socket installed on the base board are wired to the below standard :

Signals in RED are not available

The below GPIO connections are made to the connector

mpcie-reset -> /sys/class/gpio/gpio500/value

mpcie-wdisble -> /sys/class/gpio/gpio501/value

The WWAN LED is connected to the front top green bi-colour LED to indicate modem network
registration/data transmission status.

Page 17

Modem Compatibility/Operation

See the below link to pages from the main modem documentation section for details on how to
operate modems :

http://www.embeddedpi.com/documentation/3g-4g-modems

The system has been pre-installed with modem helper status script modemstat which supports
Sierra Wireless, Quectel and Simcom

See web page below for more details

https://embeddedpi.com/documentation/3g-4g-modems/mypi-industrial-raspberry-pi-3g-4g-
modem-status

A number of udev rules have been added to provide consistent shortcut symbolic links for easy
identification of the various ttyUSB interfaces created by the modem. These udev rule files are
contained in the /etc/udev/rules.d/modem-rules folder.

Note that increasingly modems are requiring raw ip connection method to be implemented, to this
end we have added qmi-network-raw in /usr/local/bin which makes this connection type easier
along with udhcp which supports raw ip mode for obtaining an IP address once connection has been
made.

Page 18

QMI Network Connection example :

Page 19

QUECTEL-CM example

Quectel Modems have a utility provided by Quectel to manage the connection process and which
will automatically configure any raw-ip settings

First install the all-in-one quectel-cm connection helper program; this will automatically configure
any raw-ip settings

https://github.com/mypiandrew/quectel-cm/releases/download/V1.6.0.12/quectel-CM.tar.gz

The command has the below syntax

quectel-CM [-s [apn [user password auth]]]

 [-p pincode] [-f logfilename] -s [apn [user password auth]]

Example 1: ./quectel-CM
Example 2: ./quectel-CM -s pp.vodafone.co.uk
Example 3: ./quectel-CM -s internet web web 0 -p 1234 -f modemconnect.log

Note that this is a non-exiting process so will not automatically fork and run in the background

Page 20

Sample Connection output, note the fall back to raw-ip is automatic.

Killing the process or issuing Ctrl-C results in the connection to be disconnected and interface
disabled.

Page 21

mPCIe IO Cards

Also available are our range of pre-certified RF modules :

 LoRa (Microchip RN2483/RN2903)
 Bluetooth 4.0 BLE (Silicon Labs/BlueGiga BLE112)
 Bluetooth 5 (Laird BL652)
 enOcean TCM310
 ZIGBEE/802.15.4 (Silicon Labs/Telegesis RX357 Module L.R. UFL)
 XBEE

These all feature an FTDI230X USB to UART chip and so appear automatically as a standard serial
port ready to run with minimal configuration needed, so offer a fast development cycle.

In order to make the ttyUSBx serial port for the mPCIe cards above constantly easy to identify we
use a udev rule to help us, this is called 10-ftdi-usbserial.rules and is located /etc/udev/rules.d/

This udev rule creates a symlink for the FTDI ttyUSBx serial port called /dev/ttyS1

For more information on how each card works please see the respective documentation page on the
website.

Page 22

SPI TRUSTED PLATFORM MODULE

Integrated on-board is an Infineon SLB9670 TPM 2.0 device, this is connected to the Raspberry Pi via
the SPI-1 bus.

Support for this device was included in mainline Kernel 4.14.85 and the device is configured via the
files below

/boot/config.txt
/boot/overlays/tpm-spi1.dtbo

This configures SPI-1 interface and the TPM, when the system has booted it will create a /dev/tpm0
node.

We have pre-installed tpmtool and tpmupdate software utilities to allow for administration of the
device

/usr/local/bin/tpminfo.sh

/usr/local/bin/tpmtool
/root/tpm-toolkit/

/usr/local/bin/tpmupdate

For more information see the github repository below

https://github.com/Infineon/eltt2

A hardware reset of the SLB9670 device is asserted at reboot/power up by the Compute Module

Page 23

I2C USER EEPROM

A 256Byte EEPROM for user ID storage

The lower 128Byte has read/write access for user storage, the first 4 hex bytes have been
programmed with an ID code visible on the barcoded sticker affixed to the PCB.

The upper 128byte is read only with the last 32bits (6 hex bytes) containing a unique ID code.

The EEPROM’s id is 0x50 with shadow addresses at 0x51-0x57

The EEPROM can be accessed for read/write operations using i2c-tools utilities, such as i2cdump

Page 24

For convenience a script to create two bash environment variables has been created in
/etc/profile.d

setup-e2id-vars.sh creates e2idsettings.sh on first run

These environment variables can be used in scripting by any user

Also included on the factory Raspbian OS image is the eeprog command line utility that can also be
used to read/write the EEPROM (source code in /root/eeprom)

Page 25

Page 26

I2C FAN CONTROLLER

Integrated onto the main board is a Microchip EMC2301 PWM Fan controller

This device occupies address 0x2F and can be operated by either basic I2C commands or a more
comprehensive kernel driver

I2C Method

Turn fan off:

i2cset -y 1 0x2f 0x30 0x00

Turn fan on 100%:

i2cset -y 1 0x2f 0x30 0xff

We have created a bash script to operate this and get RPM information, see link below :

https://github.com/mypiandrew/fanctrl

Kernel Driver Method

A 3rd party driver here can be installed to allow more control over the fan operation

https://github.com/neg2led/cm4io-fan

Page 27

I2C REAL TIME CLOCK

A DS1338Z-33+ Real Time Clock with battery backup cell is integrated onto the board, this is
configured by the below device tree overlay

dtoverlay=i2c-rtc,ds1307,addr=0x68

Further OS integration to remove the fake-hwclock functionality, and ensure the system
reads/writes to the hwclock, has also been done.

A good primer on this can be found here :

https://learn.adafruit.com/adding-a-real-time-clock-to-raspberry-pi/set-rtc-time

A symbolic link is also setup to allow quick access to the devices battery backed NVRAM

rtc_nvram -> /sys/class/rtc/rtc0/device/nvram

Example usage :

echo ‘battery backed up ram’ > /dev/rtc_nvram

cat /dev/rtc_nvram
battery backed up ram

Page 28

WATCHDOG

The on-board external watchdog with a 60 Second delay timer, provided by a Texas Instruments
TPS3431 part, the reset output of this is connected to the Raspberry Pi Compute module’s reset pin.

This is provided to give an extra layer of resilience over a system lockup in the event that the user
considers the RPi on-chip watchdog is unsuitable for their application.

The external watchdog device is enabled by push on links LK5, LK7 & LK7 and driven by GPIO16 (WD
Enable) and GPIO17 (WD Input).

Once these push on links are fitted the watchdog is enabled by default covering the whole boot
cycle.

Once the watchdog is enabled the WD Input pin on the device must be togged H-L-H at least once
per watchdog time-out period (60 seconds) and the low level pulse period must be >1uS long for the
transition to be valid.

If the device sees a valid low-to-high transition on the input pin the internal 60 second countdown
timer is reset and restarted. If the device does not see a valid input pulse within the watchdog time
out period it will pull the RPi CPU module reset line low and hard reset the system.

The watchdog can be disabled completely by either physically removing LK6 (optionally removing
LK5&7 additionally) or by driving GPIO16 low.

/etc/init.d/mypi-init.sh sets up symbolic links for these GPIO Lines, see this file for more details.

Page 29

Watchdog integration can be directly done inside application code by writing directly to the GPIO
lines or can be done via a kernel GPIO watchdog process via the watchdog package which provides
more varied sources for monitoring.

The OS files for the CM4 setup have been placed in the /root/watchdog folder on the demo OS
image.

Page 30

External Watchdog OS Integration

Integrated into the Raspbian OS there are pre-built utilities for configuring and managing watchdogs,
in this example we will show how to configure the OS to use the on board external watch dog such
that a file's last update timestamp can trigger a watchdog time out.

In this configuration if the target file is not updated the system will attempt an “orderly” reset as it
performs some basic "clean-up" tasks prior to finally stopping the watchdog input line toggling, and
so causing the Raspberry Pi Compute Module’s reset line (aka RUN pin) to be momentarily pulled
low by the watchdog device resulting in a hard reset.

The watchdog system is configured by 3 main files

- A device tree configuration file to enable the GPIO Watchdog timer /dev/watchdog1
- A systemd service file /lib/systemd/system/watchdog.service
- The conditional check options specified in /etc/watchdog.conf

The configuration files for these are stored in /root/watchdog on the demo image

The watchdog OS package needs to be installed

apt-get install watchdog

Page 31

Copy the device tree overlay for this module to the /boot/overlays folder if not already done so to
configure the kernel to add a GPIO watchdog to the system

Add the below line to the end of /boot/config.txt to enable the overlay

dtoverlay=ext-watchdog

Install the configuration files for the watchdog service and the service file that starts the watchdog
OS service then enables the watchdog.

cp /root/watchdog/watchdog.conf /etc/
cp /root/watchdog/watchdog.service /lib/systemd/system/watchdog.service

Page 32

Finally we need to remove the reference to the watchdog from /etc/init.d/mypi-init.sh to allow the
watchdog and service file to claim the relevant IO lines.

Do this by adding a # to the start of of each of the lines highlighted below

Page 33

On reboot you should be able to issue the command shown below to check the services have started
correctly.

systemctl status watchdog

Page 34

/etc/watchdog.conf contains the configuration for the external watchdog process, this has been
configured in this example to monitor the file /var/log/data and check to see its timestamp updates
at least once every 30 seconds

Other options are available :

https://manpages.debian.org/testing/watchdog/watchdog.8.en.html
https://manpages.debian.org/testing/watchdog/watchdog.conf.5.en.html

Note that the watchdog device we have configured is /dev/watchdog1 and not /dev/watchdog0
which is the internal Pi CPU watchdog)

Page 35

If the file /var/log/data we have configured as the test for watchdog time out is not written to for a
period of 3 x the change value (in seconds) then the system will attempt a managed restart, by
shutting as many services down as possible etc and then stopping the watchdog timer, causing a
hard reset

At any point up to this final time out writing/touching the file will reset the counter.

To test the system operation in the event of a kernel fault run the below to provoke a kernel panic

echo c > /proc/sysrq-trigger

Alternately a recursive "fork bomb" which causes all CPU resources to be used can be provoked
using the command below

:(){ :|:& };:

Page 36

GPIO CARD SLOT

The IO Card slot on the board supports a variety of interface cards

NOTE : Use of CAM 0 and GPIO0/1 (TX2/RX2) are mutually exclusive

Note that the green 8 way plug in screw terminal connector is uncommitted and is defined by the
signals connected to IO-OUT on the 20way connector giving rise to a truly flexible IO interface
solution.

Template files for this card can be downloaded from the website and is the same form factor as the
CM3 based integrator board.

Note that ‘double height’ IO cards require 21mm headers minimum to clear the LAN port

Note that the GPIO 3V has a recommended maximum capacity of 500mA (600mA absolute
maximum)

Page 37

GPIO Card Slot Pin Functions

Pin Signal ALT0 ALT3 ALT4 ALT5 Pin Signal ALT0 ALT3 ALT4 ALT5
1 GND

2 +5V

3 GND

4 +3.3V

5 GPIO2 SDA1 SDA3 6 GPIO16 CTS-0 CTS-1
7 GPIO3 SCL1 SCL3 8 GPIO17 RTS-0 RTS-1
9 GND

10 GPIO25 SPI4-CE1

11 GPIO22 SDA6 12 GPIO26 SPI5-CE1
13 GPIO23 SCL6 14 GPIO27
15 GPIO8 SPI0-CE0 I2CSL CE TXD-4 SDA4 16 GPIO12 PWM0_0 SPI5-CE0 TXD-5 SDA5
17 GPIO9 SPI0-MISO I2CSL SDI RXD-4 SCL4 18 GPIO13 PWM0_1 SPI5-MISO RXD-5 SCL5
19 GPIO10 SPI0-MOSI I2CSL SDA CTS-4 SDA5 20 GPIO14 TXD-0 SPI5-MOSI CTS-5 TXD-1
21 GPIO11 SPI0-SCLK I2CSL SCL RTS-4 SCL5 22 GPIO15 RXD-0 SPI5-SCLK RTS-5 RXD-1
23 GPIO0 SDA0 TXD-2 SDA6 24 GPIO24
25 GPIO1 SCL0 RXD-2 SCL6 26 GPIO5 GPCLK1 SPI4-MISO RXD-3 SCL3
27 GND

28 GPIO6 GPCLK2 SPI4-MOSI CTS-3 SDA4

29 GND

30 GPIO7 SPI0-CE1 SPI4-SCLK RTS-3 SCL4
31 +5V

32 GPIO4 GPCLK0 SPI4-CE0 TXD-3 SDA3

33 GND 34 +3.3V

NOTE : Use of CAM 0 and GPIO0/1 (TX2/RX2) are mutually exclusive

Page 38

Full Pi GPIO Function Listing

Notes GPIO Pull ALT0 ALT3 ALT4 ALT5
CAMERA 0 | IO SLOT GPIO0 High SDA0 TXD-2 SDA6
CAMERA 0 | IO SLOT GPIO1 High SCL0 RXD-2 SCL6
I2C1 (IO SLOT) GPIO2 High SDA1 SDA3
I2C1 (IO SLOT) GPIO3 High SCL1 SCL3
IO SLOT GPIO4 High GPCLK0 SPI4-CE0 TXD-3 SDA3
IO SLOT GPIO5 High GPCLK1 SPI4-MISO RXD-3 SCL3
IO SLOT GPIO6 High GPCLK2 SPI4-MOSI CTS-3 SDA4

IO SLOT GPIO7 High SPI0-CE1 SPI4-SCLK RTS-3 SCL4
IO SLOT GPIO8 High SPI0-CE0 I2CSL CE_N TXD-4 SDA4
IO SLOT GPIO9 Low SPI0-MISO I2CSL SDI RXD-4 SCL4
IO SLOT GPIO10 Low SPI0-MOSI I2CSL SDA CTS-4 SDA5
IO SLOT GPIO11 Low SPI0-SCLK I2CSL SCL RTS-4 SCL5
IO SLOT GPIO12 Low PWM0_0 SPI5_CE0_N TXD-5 SDA5
IO SLOT GPIO13 Low PWM0_1 SPI5_MISO RXD-5 SCL5
IO SLOT GPIO14 Low TXD-0 SPI5_MOSI CTS-5 TXD-1
IO SLOT GPIO15 Low RXD-0 SPI5_SCLK RTS-5 RXD-1
WDOG-EN | IO SLOT GPIO16 Low CTS-0 CTS-1
WDOG-IN | IO SLOT GPIO17 Low RTS-0 RTS-1
On Board TPM GPIO18 Low SPI1-CE0
On Board TPM GPIO19 Low SPI1-MISO
On Board TPM GPIO20 Low SPI1-MOSI
On Board TPM GPIO21 Low SPI1-SCLK
IO SLOT GPIO22 Low SD0_CLK SD1_CLK SDA6
IO SLOT GPIO23 Low SD0_CMD SD1_CMD SCL6
IO SLOT GPIO24 Low SD0_DAT0 SD1_DAT0
IO SLOT GPIO25 Low SD0_DAT1 SD1_DAT1 SPI4-CE1
IO SLOT GPIO26 Low SD0_DAT2 SD1_DAT2 SPI5-CE1
IO SLOT GPIO27 Low SD0_DAT3 SD1_DAT3

Page 39

DUAL CAMERA

Dual Camera support has the below pre-requisites

1. Boot EEPROM Firmware version should be 6th July or later

2. System config.txt configuration settings for camera usage

3. System dt-blob.bin file configuring the camera setup

This file is located in /boot and configures the control lines and interfaces used for camera setup

Reboot the system to complete the changes

Page 40

With this in place the command below should report back accordingly after the system has
rebooted.

Note : If 2 cameras are configured (as per default image) but only 1 camera is connected it will
always be detected as camera 0 regardless of which physical port the camera is plugged into.

Page 41

10/100/1000 ETHERNET INTERFACE

The integrated Gigabit has been brought out to the main face of the card, this takes the place of the
RJ45 Serial port on the CM3 Integrator board, so as to allow easy hardware migration.

Note that the Gigabit interface takes its MAC address from the CM4’s serial number.

Page 42

POWER IN DIGITAL INPUT

The Power input connector has an integrated opto-isolated digital input allowing any voltage from
5V up to 48V to be registered as a 3V digital signal on the CPU side. Here we are re-purposing the
Analogue In 0 pin of the CM4s Power Management Controller IC

We have created a simple bash script to make the process of reading this input easy and report the
logical input state

Page 43

OS CONFIGURATION FILES

This is a list of the files altered from a base install to create the demo OS image

/boot/dt-blob.bin
/boot/config.txt
/boot/cmdline.txt
/boot/overlays/tpm-spi1.dtbo
/boot/overlays/disablepcie.dtbo
/boot/overlays/ext-watchdog.dtbo

/usr/local/bin/camerastat
/usr/local/bin/deleteallsmsmessages
/usr/local/bin/deletemessage
/usr/local/bin/digin.sh
/usr/local/bin/eeprog
/usr/local/bin/fanctl.sh
/usr/local/bin/mbpoll
/usr/local/bin/modemstat
/usr/local/bin/openopc -> /opt/OpenOPC-1.3.1/src/openopc.py
/usr/local/bin/qmi-network-raw
/usr/local/bin/resetbyauthorized.sh
/usr/local/bin/sendsms
/usr/local/bin/smscmd
/usr/local/bin/smscmddemo.sh
/usr/local/bin/smslist
/usr/local/bin/takephoto
/usr/local/bin/tpminfo.sh
/usr/local/bin/tpmtool
/usr/local/bin/tpmupdate
/usr/local/bin/uhubctl
/usr/local/bin/usbpwrctl.sh

/etc/udev/rules.d/8-sdcard.rules
/etc/udev/rules.d/20-modem-ec2x.rules
/etc/udev/rules.d/20-modem-7xxxx.rules
/etc/udev/rules.d/modem-rules/*

/etc/rc.local
/etc/issue
/etc/modules

/etc/init.d/mypi-init.sh
/etc/init.d/hwclock.sh

/opt/OpenOPC-1.3.1/

/root/backups/*
/root/image-create/*
/root/overlays/*
/root/stresscpu.sh
/root/tpm-toolkit/*
/root/watchdog/*
/root/quectel-CM/*

Page 44

RASPBERRY PI DOCUMENTATION

Raspberry Pi have produced a comprehensive knowledge base on how to configure and control
various aspects of the Compute Module and it’s OS.

https://www.raspberrypi.com/documentation

Page 45

SCHEMATICS

A reduced schematic set can be provided on request, please contact your technical support
representative for more details.

Page 46

FCC Class A Statement

This equipment has been tested and complies with the limits for a Class A digital device, pursuant to
Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful
interference when the equipment is operated in a commercial environment. This equipment
generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance
with the instruction manual, may cause harmful interference to radio communications. Operation of
this equipment in a residential area is likely to cause harmful interference, in which case the user will
be required to correct the interference at his own expense.

Properly shielded and grounded cables and connectors must be used in order to meet FCC emission
limits. Embedded Micro Technology is not responsible for any radio or television interference caused
by using other than recommended cables and connectors or by unauthorized changes or
modifications to this equipment. Unauthorized changes or modifications could void the user's
authority to operate the equipment.

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two
conditions: (1) this device may not cause harmful interference, and (2) this device must accept any
interference received, including interference that may cause undesired operation

