
Page 1

MyPi Industrial IoT Edge Gateway

User Guide

Issue : 1.7

Dated : June 2023

Prepared By : Andrew O’Connell

Page 2

FEATURES

 Supports Raspberry Pi Compute Module 1/3/3+/4S providing a low power or high

performance system

 10/100 Ethernet

 Isolated CAN Interface with on-board termination resistor

 Isolated 2-Wire RS485 Interface with transparent hardware flow control and on-board bus

pull and termination resistors

 2 x mPCIe Interface supporting 3G/4G Modems (1 x on-board SIM slot) and USB WiFi N/AC

cards as well as Bluetooth/LoRa/Zigbee/TCM310 RF IO modules

 SD Card secondary storage in addition to eMMC flash on Raspberry Pi Compute Module

 Integrated Infineon SLB9670 TPM 2.0

 Optional IO module with accelerometer & secondary RTC providing ‘shake to wake’ and

‘sleep/wake timer’ functionality.

 Software enabled 1.6s hardware watchdog

 256Byte ID EEPROM

 Switched power input with ‘Power Good’ input line allowing for controlled power up and

safe shutdown operation – ideal for automotive environments

 Wide 7-28V DC power input range, withstanding transient dips to 6V (e.g, Engine Crank)

 FCC/CE Class A approval

 Wide fan-less operational ambient temperature range -25 to +60 °C

 Small, Rugged aluminium enclosure 11 x 13 x 3cm with flexible mounting Kit

Page 3

FRONT/REAR IO PORTS

Main IO Port

1 CAN L

2 CAN H

3 CAN-BUS 120R Termination Enable A*

4 CAN-BUS 120R Termination Enable B*

5 RS485 – A (D+)

6 RS485 – B (D-)

7 CAN/RS485 Isolated Ground/0V

8 Not Connected

* Connect these 2 pins together to enable the internal CAN termination resistor

DC In

1 7-28V Vin

2 ‘Power Good’ signal (6-30V Input)

3 0V

Page 4

PROG Raspberry Pi Compute Module eMMC programming connector

1 USB Power

2 USB Data -

3 USB Data +

4 NC

5 GND

The programming mode link is set enabled by default so the unit can be reprogrammed without

opening the case.

SERIAL External UART1 Connector (Serial Console)

1 NC

2 Pi Tx OUT (3V TTL Voltage Level)

3 Pi Rx IN (3V TTL Voltage Level)

4 NC

5 GND

Note: Development kits are shipped with a USB to TTL UART cable compatible with this connector

Antenna 1-5 functionality is documented on the configuration label affixed to

the bottom of the unit

Page 5

INTERNAL MAIN BOARD FEATURES

SIM For

mPCIe2
mPCIe 2 mPCIe 1

uSD Card

 Watchdog

LK2
Boot
Mode

9-28V DC

VIN

LK1
Power Gate Selector

LK3
Reset

LK4/5/6
RS485 Bias CAN-BUS

+ RS485 I/O

Status
LEDs

10/100
Ethernet

UART1

Serial

Console

TPM 2.0

L

K

3

R

e

s

e

t

RTC

Page 6

Expansion Connector

Serial Console Pi eMMC Programming Port

Page 7

CAN Interface

The EdgeGateway unit provides a fully isolated CAN 2.0b Interface using Microchip MCP2515I

controller chip.

RS485 Interface

The EdgeGateway unit provides a fully isolated 2-Wire (half duplex) RS485 interface with automatic,

transparent hardware flow control.

SD Card

This connects to the SD1 secondary SD card interface on the Raspberry Pi Compute module,

providing easy expansion of the Pi Modules eMMC storage making it ideal for data logging.

SIM Card

This connects only to MPCIE2 (Left hand side, nearest to SIM/SD Card)

TPM 2.0

The Infineon SLB9670 TPM 2.0 Is connected via SPI1, this has kernel support from version 4.14.85

onwards

Expansion connector

Internal expansion connector for Accelerometer/RTC Sleep/Wake card

ID EEPROM

A 256Byte EEPROM for user ID storage

The lower 128Byte has read/write access for user storage, the first 4 hex bytes have been

programmed with an ID code visible on the outside of the unit.

The upper 128byte is read only with the last 32bits (6 hex bytes) containing a unique ID code.

Page 8

HARDWARE CONFIGURATION LINKS

LK1 Power Switch FET operation

1-2 Enable switchable power input

2-3 Disable switchable power input (Power always enabled)*

LK2 RPi Compute Module eMMC USB programming mode

1-2 Enabled*

2-3 Disabled

LK3 System Reset

1 0V

2 /RESET

*Default fitted position as shipped.

Page 9

LK4 120R RS485 Termination Resistor Enable*

LK5 640R RS485 Bus Pull Up Enable*

LK6 640R RS485 Bus Pull Down Enable*

*Default fitted position as shipped.

Page 10

EXTERNAL SERIAL CONSOLE

A special serial console cable with integrated USB to UART driver is included in the dev kit

In order to use this cable the vendor’s drivers need to be installed, download and install the

standard VCP driver for your OS here :

Silicon Labs CP210x USB to UART Driver Download Link

Once installed plug the cable in and make a note of the COM port the device has initialised to as this

number will likely differ from the number below.

https://www.silabs.com/products/development-tools/software/usb-to-uart-bridge-vcp-drivers

Page 11

Next download and install putty for SSH/Serial console access : Putty Download Link

Configure putty for serial console access as below, using the COM number noted previously and

using baud rate 115200

Finally click “Open” and power up the EdgeGateway unit:

If the Ethernet is connected the unit will try to DHCP an address from a local server, at this point you

can either log in via the serial port or establish an SSH console using Putty.

The default password for root user is “root”

IMPORTANT NOTE : This should be changed this as soon as possible.

https://www.ssh.com/ssh/putty/windows/install

Page 12

RASPBERRY PI COMPUTE MODULE PROGRAMMING

The unit as shipped is configured to allow the eMMC flash on the compute module to be re-

programmed without removing the PCB from the enclosure.

Units come pre-programmed with the demo Raspbian OS pre-installed, this section describes how to
write a new disk image to the Compute Module.

First of all download the windows USB boot installer, this will install the device drivers as well as a
program we'll use later called RPi-Boot (note there is a new version for CM1, CM3 & CM3+ dated
November 2018) :

Raspberry Pi RPI-BOOT Software Download Link

Connect the mini USB connector to the Windows PC using the supplied USB A to micro USB B data
cable and then power up the unit.

Windows will then show the following stages as it configures the OS :

Once that sequence has finished Windows has now installed the required drivers and you can power
off the unit for a moment whilst we get the PC side ready for the next step.

https://github.com/raspberrypi/usbboot/raw/master/win32/rpiboot_setup.exe

Page 13

Making sure you have the unit powered off start up RPi Boot, this is easiest done via the start menu

When the RPi-Boot starts up it’ll sit and wait for the attached board to boot up :

Power up the unit and RPi-Boot will configure the unit to appear as a flash drive :

Note : Sometimes RPi-Boot doesn’t correctly catch the board as it boots and as a result the re-
configure sequence doesn’t complete correctly. In this case the simplest thing to do is to switch the
board off, close then restart RPi-Boot and then power the board back on to try again.

When done the compute module will alternate into mass storage mode (so behaving just as though
it's a USB memory stick) and windows will then recognise the module as an external drive.

If the compute module eMMC already contains an OS Windows will recognise the FAT partition and

assign that (at least) a drive letter, this is useful in the event that a configuration error with the boot

files is made (e.g. dt-blob.bin or config.txt) and needs recovery actions to be performed.

Page 14

After drive letter assignment Windows may indicate that partitions need scanning or fixing, these

can be ignored/cancelled.

There are a few different ways we can load on the OS, for simplicity we’ll cover using the

recommended OS writing software and process from the main Raspberry Pi website

This process writes a disk image, containing the partition table as well as both FAT boot partition and
Linux EXT partitions, over the entire disk.

The basic sequence we're following is :

1. Download the Win32DiskImager utility from this Download Link
2. Install and run the Win32DiskImager utility (You will need to run the utility as administrator,

right-click on the shortcut or exe file and select Run as administrator)
3. Select the OS image file you wish to write
4. Select the drive letter of the compute module in the device box (in our case F:) - Again note

that the disk image is a 1:1 of the entire disk (containing the partition table, FAT & EXT
partitions)

Be careful to select the correct drive; if you get the wrong one you can destroy your data
on the computer's hard disk!

5. Click Write and wait for the write to complete

http://sourceforge.net/projects/win32diskimager/

Page 15

RS485 Interface

The EdgeGateway unit features a fully isolated 2-wire/half-duplex RS485 interface connected to

UART1 (ttyAMA0). This has automatic, transparent, baud rate independent hardware flow control

built in to simplify application development.

For this example we will use two open-source projects

MBPoll Github Page

MBPoll is a command line utility useful for debugging Modbus connections, this can be compiled

from source however a version has been pre-compiled and installed on the unit as shipped

Windows Modbus PLC Simulator

This program provides a useful Modbus TCP/RTU PLC simulator, as downloaded this is a self-

contained single EXE file, so does not contain an installer - take note of the requirement for a Visual

C++ component if you have problems running the software.

You will need the following additional parts from the development kit and additionally some 2-Core

cable to connect us the two parts

 RS485 to RS232 adapter

 USB to RS232 adapter

The two parts should be wired as below

Note that in most cases the RS485 adapter will usually self-power from the USB-RS232 adapter so

should not require an additional power feed.

EdgeGateway RS232-RS485
Adapter

A(D+)

B(D-)

A(D+)

B(D-)

https://github.com/epsilonrt/mbpoll/
https://sourceforge.net/projects/modrssim2

Page 16

With this setup plugged in the next step is to identify the COM port the USB-RS232 adapter has

created. Opening Windows Control Panel take a note of the COM port Windows has initialised the

FTDI USB Adapter to, in this case COM14

Next we should start up the PLC simulator,

Once loaded you'll be presented with a screen like the below, take note of the three highlighted
areas:

Page 17

- The FMT Dialog Box controls how the registers are shown/configured; we'll keep this at
decimal +/- for the moment.

- The COM Port selection box controls the COM port & settings the simulator is connected to
- The Cable & Port icon controls whether the program is "plugged in" to the selected COM

port
- The Register Window is where most of the action takes place here, in this area click on each

of the first row and fill in to match the above.

Press F1 at any time for help/information on how the program works

Configure the COM port settings on the PLC simulator to the USB COM port and keep the Baud rate
settings the default as 9600 8N1.

Having logged into the EdgeGateway, on the command line run the following :

mbpoll -a 1 -b 9600 -P none -t 4 -r 1 -c 5 /dev/ttyAMA0 -1

Broken down, this will read from the device at address 1 (-a 1) using baud rate 9600 8N1 (-b 9600 -P
none) the program will request 5 registers (-c 5) starting at register 1 (-r 1) using function code 4 to
read the holding registers (-t 4). The -1 on the end means 'just make 1 poll and stop'

This is the output from a successful read:

Now we'll use the same program to write a register, the below will write 1 register value (555)
starting at register 5 (-r 5) in address range 4 (-t 4)

mbpoll -a 1 -b 9600 -P none -t 4 -r 5 /dev/ttyAMA0 -1 555

Page 18

This is the output from a successful write:

 And checking the PLC Simulator program we can see the write have been done correctly

This is a useful website to help with understanding the Modbus protocol :

http://www.simplymodbus.ca/

The mbpoll program uses an open source C library called libmodbus, which has a very permissive

licence making it ideal for inclusion in any end application and short cutting development time.

http://libmodbus.org/

We have created a short C based Modbus logging application as a demonstration:

LibModbus Demo Application

http://www.simplymodbus.ca/
http://libmodbus.org/
https://github.com/mypiandrew/modbuslogger

Page 19

CAN Interface

The EdgeGateway unit provides a fully isolated CAN 2.0b Interface using the popular Microchip

MCP2515I controller chip, this is connected to the Raspberry Pi Compute module via the SPI-0 Bus.

The CAN interface is configured by the below files, these have been setup/installed as part of the

shipped configuration

/boot/config.txt

These settings should not need editing, they configure the interface at a basic hardware level and

enable the required kernel modules

/etc/network/interfaces.d/can

This file configures the bit rate along with whether the interface is read only or read/write and

automatically brings up the interface at boot. (note that "listen-only off" setting means the system

can read and write to the bus) :

Page 20

Connecting into the CAN network, this diagram shows two example networks and where the
EdgeGateway fits.

1 - Single CAN device - No existing network

2 - Multiple CAN Devices - Existing network

Remember to only connect the CAN-H and CAN-L lines to the bus, don't inter-connect the ground
wire or swap the H and L lines, and only wire in the internal 120R termination resistor if required.

When connecting CAN controllers together then it is vital that the bus is terminated correctly or the
network will not operate correctly.

EdgeGateway

CAN-H

CAN-L

CAN Device

CAN-H

CAN-L

Internally available

inside Gateway

1
2

0
R

1
2

0
R

EdgeGateway

CAN Device

CAN-H

CAN-L

1
2

0
R

1
2

0
R

C
A

N
-H

C
A

N
-L

CAN Device

C
A

N
-H

C
A

N
-L

CAN Device

CAN-H

CAN-L

Page 21

If 120R termination resistors are used to terminate the network these should be positioned between
the H and L lines at the furthest ends of the bus to correctly terminate the network, the network will
not operate correctly without them.

A quick resistance check done with the equipment powered off using a multi-meter across the H & L
lines should give approximately 60 Ohms if all is wired up correctly.

When connecting a CAN-BUS network we strongly recommend using appropriate cabling e.g. Belden

9481 120 Ohm impedance twisted-pair wire (or equivalent)

Once the network is wired up correctly then we can proceed to checking the gateway setup

The command below will show the current CAN setup and give line statistics

ip -details -statistics link show can0

“can state” is the actual MCP2515 CAN controller state, so ERROR-ACTIVE is correct operation,

ERROR-PASSIVE or BUS-OFF are signs something is wrong. For more information see the MCP2515

datasheet.

The SocketCAN can-utils package provides a number of programs for sending, receiving, monitoring

and (selectively) logging data from the bus, as well as the ability to replay a log file:

asc2log, bcmserver, canbusload, can-calc-bit-timing, candump, canfdtest,

cangen, cangw, canlogserver, canplayer, cansend, cansniffer, isotpdump,

isotprecv, isotpperf, isotpsend, isotpserver, isotpsniffer, isotptun,

log2asc, log2long, slcan_attach, slcand and slcanpty.

Command line utilitites candump and cangen can be useful for application development/debug,

especially where no local CAN network exisits as two Gateway units can be wired back-to-back to

allow easy simulation

Page 22

e.g.

For more information on how the Linux Socket CAN interface works see links below :

https://www.kernel.org/doc/html/latest/networking/can.html

https://github.com/linux-can/can-utils/

https://www.kernel.org/doc/html/latest/networking/can.html
https://github.com/linux-can/can-utils/

Page 23

SD Card

The on-board micro SD Card is interfaced to the Raspberry Pi Compute Module using the secondary

SDIO interface.

The configuration file /etc/udev/rules.d/8-sdcard.rules creates the below /dev shortcuts for the

main SD Card and any partitions contained

This SD card cannot be booted from however can be auto mounted at boot (via /etc/fstab) so offers

a low cost method of expanding the core eMMC filesystem

We recommend the use of industrial grade SD cards, which whist more expensive have greater

operating temperature range, on-device wear-levelling and generally greater endurance than

commercial grade parts.

For more information please see our knowledgebase article below

https://embeddedpi.com/documentation/sd-card-interface/raspberry-pi-industrial-micro-sd-cards

https://embeddedpi.com/documentation/sd-card-interface/raspberry-pi-industrial-micro-sd-cards

Page 24

TPM 2.0 Device

Integrated on-board the EdgeGateway unit is an Infineon SLB9670 TPM 2.0 device, this is connected

to the Raspberry Pi via the SPI-1 bus.

Support for this device was included in mainline Kernel 4.14.85 and the device is configured via the
files below

/boot/config.txt
/boot/overlays/tpm-spi1.dtbo

This configures SPI-1 interface and the TPM, when the system has booted it will create a /dev/tpm0

node.

We have pre-installed tpmtool and tpmupdate software utilities to allow for administration of the

device

/usr/local/bin/tpminfo

/usr/local/bin/tpmtool

/root/tpm-toolkit/

For more information see the github repository below

https://github.com/Infineon/eltt2

https://github.com/Infineon/eltt2

Page 25

USER EEPROM

A 256Byte EEPROM for user ID storage

The lower 128Byte has read/write access for user storage, the first 4 hex bytes have been

programmed with an ID code visible on the outside of the unit.

The upper 128byte is read only with the last 32bits (6 hex bytes) containing a unique ID code.

The EEPROM’s id is 0x50 with shadow addresses at 0x51-0x57

The EEPROM can be accessed for read/write operations using i2c-tools utilities, such as i2cdump

Page 26

Also included on the factory Raspbian OS image is the eeprog command line utility that can also be

used to read/write the EEPROM (source code in /root/eeprom)

For convenience a script to create 2 Bash environment variables has been created in /etc/profile.d

setup-e2id-vars.sh creates e2idsettings.sh on first run

Page 27

These environment variables can be used in scripting by any user

Page 28

GPIO SYSTEM USAGE

The following table illustrates the system usage of the Pi Module GPIO Lines

All IO line signals pulled to inactive setting as default, in some cases the board is fitted with a

matching resistor pull in the same direction as the default internal 50k pull.

GPIO Pi PU/PD Signal

2 I2C-SDA

3 I2C-SCL

4 PU LED1-RED

5 PU /CAN RESET

7 SPI0-CE1

8 SPI0-CE0

9 SPI0-MISO

10 SPI0-MOSI

11 SPI0-SCLK

14 UART-0 (ttyAMA0) TX – RS485

15 UART-0 (ttyAMA0) RX – RS485

16 PU /TPM-RESET

17 PU /TPM-PIRQ

18 SPI1-CE0

19 SPI1-MISO

20 SPI1-MOSI

21 SP1-CLK

22 PD MPCIE 2 RESET

23 PD MPCIE 2 WDIS

24 PD SIERRA RESET**

25 CANIRQ

26 PU /WD ENABLE

27 PU /WD INPUT

32 UART-1 (ttyS0) TX – Console

33 UART-1 (ttyS0) RX – Console

34 PD SD1-CLK

35 PU SD1-CMD

36 PU SD1-D0

37 PU SD1-D1

38 PU SD1-D2

39 PU SD1-D3

40 PD MPCIE 1 WDIS

41 PD MPCIE 1 RESET

42 PD POWER LATCH

43 PU /POWER-ON

44 (PU)* /LAN_RESET

* This line has an external pull up resistor only.
** Some Sierra Wireless models use an alternate reset pin to standard

Page 29

POWER GATING OPERATION

The middle ‘Power Good ‘ input line on the main power in connector provides a mechanism to allow

the system to control power up and graceful power down, this line can accept a wide voltage range

from 6-30V DC.

This feature is intended to allow the unit to be used in an automotive environment where the unit

can run from the raw battery power but be switched on by the usage of the accessory power line

which is usually switched from the main ignition key.

The operation of this feature is as below, with reference to the below schematic extract:

With link LK1 set in position 1-2

The ‘Power-Good’ input from the main DC power in plug is fed, via the diode wired-OR gate created

by D5, through to Q1 which controls whether the main power feed FET (U4) is ON or OFF.

A DC Input of 6-30V on ‘Power-Good’ input will enable the main power feed FET and the board will

power up.

Built into the Raspberry Pi power up boot sequence is the ability to condition the state of GPIO lines

very early on, usually within 3-5 seconds from power on, and well before the Linux kernel is loaded.

Page 30

Using this facility we can effectively latch the main power feed FET on by driving GPIO42 to a logic

high shortly after power up, this will keep the power ON even if the ‘Power Good’ input line is

subsequently disconnected.

This can be achieved either by using a custom device tree file (/boot/dt-blob.bin), or using the GPIO

overlay command in /boot/config.txt (gpio=42=op,dh) if using a recent Raspberry Pi kernel (4.14

onwards)

Additionally ‘Power Good’ line and so can also be monitored via GPIO43, this line is normally pulled

high by R34 if GPIO43 is reading a 0 (logic low) then it can be determined that the ‘Power Good’

input voltage is present (due Q10 is pulling R34 Low)

If GPIO43 reads 1 (logic high) then it can be determined that the ‘Power Good’ input voltage has

been disconnected or switched off.

So by a combination of using the ‘Power Latch’ (GPIO42) line to latch the power supply switch FET at

start-up and monitoring ‘Power Good’ via (GPIO43) we can check for a power down/switch off event

(e.g. Ignition key removed from car) and the system can be put into a controlled shutdown

sequence (e.g. Linux command ‘halt’).

As the default state for the Power Latch (GPIO42) line is logic low the board will power off at the end

of the standard Linux shutdown sequence in the same manner as a Desktop PC with an ATX power

supply (assuming that Power-Good line remains low for the latter part of the shutdown sequence)

With LK1 set to positions 2-3

The ‘Power Good’ voltage input line is ignored and Q1 is instead fed from the main DC input power,

as a result of this the system will only switch off once the main system power feed is removed.

If the Linux command halt is used in this case the system will hang at the end of the shutdown

sequence as it cannot cut off its own power feed due to ‘Power-Good’ being held at >3V.

Page 31

WATCHDOG

The on-board external 1.6 second watchdog is a single chip part provided by ST STWD100PYW83F,

the reset output of this part is connected to the Raspberry Pi Compute module.

This is provided to give an extra layer of resilience over a system lockup in the event that the user

considers the RPi on-chip watchdog is unsuitable for their application.

The external watchdog device is driven by GPIO26 (/WD Enable) and GPIO27 (/WD Input), by default

the watchdog is disabled.

Once the watchdog is enabled the WD Input pin on the device must be togged H-L-H at least once

per watchdog time-out period (1.6 seconds) and the low level pulse period must be >1uS long for the

transition to be valid.

If the device sees a valid low-to-high transition on the input pin the internal 1.6 second countdown

timer is reset and restarted. If the device does not see a valid input pulse within the watchdog time

out period it will pull the RPi CPU module reset line low, which will also cause GPIO26 (/WD Enable)

to be pulled high (as the Pi CPU resets)and so disable the watchdog allowing the system to boot.

With this in mind if the external watchdog is not used a hard reset of the Pi module can be effected

by setting WD enable line high and then not toggling the watchdog input line.

The Reset lines for all other devices (including mPCIe) are available via separate, independent GPIO

lines.

When the system hard resets in this manner all GPIO lines will revert back to their default state,

which will have implications if the gated power input facility is in use.

Page 32

External Watchdog OS Integration

Integrated into the Raspbian kernel and OS there are pre-built utilities for configuring and managing

watchdogs, in this example we will show how to configure the OS such that a file's last update

timestamp will trigger a watchdog time out.

In this configuration if the target file is not updated the system will attempt an “orderly” reset as it

performs some basic "clean-up" tasks prior to finally stopping the watchdog input line toggling, and

so causing the Raspberry Pi Compute Module’s reset line (aka RUN pin) to be momentarily pulled

low by the watchdog device resulting in a hard reset.

The watchdog system is configured by altering 4 main files

- A device tree configuration file to enable the GPIO Watchdog timer /dev/watchdog1

- A systemd service file /lib/systemd/system/watchdog.service

- The conditional check options specified in /etc/watchdog.conf

- Edit and remove the watchdog section from /etc/init.d/mypi.sh

Start by installing the requisite files and configuring them

Add the below line to the end of /boot/config.txt

dtoverlay=ext-watchdog

Page 33

The watchdog service file has been altered as shown below to start the watchdog process, then

enable the watchdog and during boot – Ensure the same section has been edited out of

/etc/init.d/mypi.sh to avoid clashing

Page 34

The configuration we’re using to determine both the watchdog device the system should be using

and the test for system time out is setup in /etc/watchdog.conf

With these files in place reboot the unit so the changes take effect

Page 35

On reboot you should be able to issue the commands shown below to check the services have

started correctly.

If the file we have configured as the test for watchdog time out is not written to for a period of 3 x

the change value (in seconds) then the system will attempt a managed restart, by shutting as many

services down as possible etc and then stopping the watchdog timer, causing a hard reset

At any point up to this final time out writing/touching the file will reset the counter.

Page 36

To test the system operation in the event of a kernel fault run the below to provoke a kernel panic

echo c > /proc/sysrq-trigger

Alternately a recursive "fork bomb" which causes all CPU resources to be used can be provoked

using the command below

:(){ :|:& };:

Page 37

mPCIe Compatibility

The mPCIe sockets installed on the base board are wired to the below standard :

Pin Signal Pin Signal

1 - 2 3.3V

3 - 4 GND

5 - 6 1.5V

7 - 8 SIM_VCC

9 GND 10 SIM_I/O

11 - 12 SIM_CLK

13 - 14 SIM_RST

15 GND 16 SIM_VPP

Mechanical Key

17 - 18 GND

19 - 20 WDIS# (GPIO23)

21 GND 22 PERST# (GPIO39)

23 - 24 3.3V

25 - 26 GND

27 GND 28 -

29 GND 30 -

31 - 32 -

33 - 34 GND

35 GND 36 USB_D+

37 - 38 USB_D-

39 3.3V 40 GND

41 3.3V 42 LED_WWAN#

43 GND 44 LED_WLAN#

45 - 46 -

47 - 48 -

49 - 50 GND

51 - 52 3.3V

For mPCIe-2 (Left hand side nearest SIM Socket) pins 42/43 are connected to the bottom Green LED

driver.

For mPCIe-1 (Right hand side) pins 8/10/12/14/16 (SIM) are not connected

Pins 20/22 on both sockets are connected to GPIOs to provide software controllable access to Reset

and Wireless Disable lines (see GPIO Table earlier)

For mPCIe-2 Pin 33 is connected to GPIO24 for Sierra Wireless Modems with non-standard reset

lines.

Page 38

Modem Compatibility/Operation

See the below link to pages from the main modem documentation section for details on how to

operate modems :

http://www.embeddedpi.com/documentation/3g-4g-modems

The system has been pre-installed with modem helper status script modemstat which supports

Sierra Wireless, Quectel and Simcom

See web page below for more details

https://embeddedpi.com/documentation/3g-4g-modems/mypi-industrial-raspberry-pi-3g-4g-modem-status

A number of udev rules have been added to provide consistent shortcut symbolic links for easy

identification of the various ttyUSB interfaces created by the modem. These udev rule files are

contained in the /etc/udev/rules.d/modem-rules folder.

Note that increasingly modems are requiring raw ip connection method to be implemented, to this

end we have added qmi-network-raw in /usr/local/bin which makes this connection type easier

along with udhcp which supports raw ip mode for obtaining an IP address once connection has been

made.

http://www.embeddedpi.com/documentation/3g-4g-modems
https://embeddedpi.com/documentation/3g-4g-modems/mypi-industrial-raspberry-pi-3g-4g-modem-status

Page 39

QMI Network Connection example :

Page 40

QUECTEL-CM example

Quectel Modems have a utility provided by Quectel to manage the connection process and which

will automatically configure any raw-ip settings

First install the all-in-one quectel-cm connection helper program; this will automatically configure

any raw-ip settings

https://github.com/mypiandrew/quectel-cm/releases/download/V1.6.0.12/quectel-CM.tar.gz

The command has the below syntax

quectel-CM [-s [apn [user password auth]]]

 [-p pincode] [-f logfilename] -s [apn [user password auth]]

Example 1: ./quectel-CM

Example 2: ./quectel-CM -s pp.vodafone.co.uk

Example 3: ./quectel-CM -s internet web web 0 -p 1234 -f modemconnect.log

Note that this is a non-exiting process so will not automatically fork and run in the background

https://drive.google.com/file/d/1S7-o7-u4StUJoAfwig6BaepBhLSmQsDa/view?usp=sharing

Page 41

Sample Connection output, note the fall back to raw-ip is automatic.

Killing the process or issuing Ctrl-C results in the connection to be disconnected and interface

disabled.

Page 42

mPCIe IO Cards

Also available are our range of pre-certified RF modules :

 LoRa (Microchip RN2483/RN2903)

 Bluetooth 4.0 BLE (Silicon Labs/BlueGiga BLE112)

 Bluetooth 5 (Laird BL652)

 enOcean TCM310

 ZIGBEE/802.15.4 (Silicon Labs/Telegesis RX357 Module L.R. UFL)

 XBEE

These all feature an FTDI230X USB to UART chip and so appear automatically as a standard serial

port ready to run with minimal configuration needed, so offer a fast development cycle.

In order to make the ttyUSBx serial port for the mPCIe cards above constantly easy to identify we

use a udev rule to help us, this is called 10-ftdi-usbserial.rules and is located /etc/udev/rules.d/

This udev rule creates a symlink for the FTDI ttyUSBx serial port called /dev/ttyS1

For more information on how each card works please see the respective documentation page on the

website.

Page 43

OS CONFIGURATION FILES

There are a handful of files needed to configure the MyPi-Mini from the base Raspbian install, these

are available from this link:

https://drive.google.com/file/d/1FZLFnooJoLJ8ERhm10IsipobfFo0XbKa

Filename File location Description

config.txt /boot System Configuration File

cmdline.txt /boot Kernel boot command line options

dt-blob.bin /boot Custom Device tree File to latch GPIO42 high at
startup (alternate to using config.txt on pre-4.14
kernels)

mypi.sh /etc/init.d Bash Script to configure Linux OS GPIO exports for
command line use & create /dev shortcuts.

sdio34.dtbo /boot/overlays Enable secondary SD Card interface (SD1)

tpm-spi1.dtbo /boot/overlays Enable TPM2.0 on SPI-1 interface

(multiple) /etc/udev/rules.d Install udev rules to create /dev shortcuts for
modem, SD Card and mPCIe IO cards

setup-e2id-vars.sh /etc/profile.d/ Reads ID EEPROM and configures bash environment
variables $E2FIXID & $E2USRID

config.txt controls which on-board peripherals are enabled, there should be no need to alter this

unless the user wants to alter CPU speed for optimising thermal/power operation.

cmdline.txt this controls what kernel command line options are enabled at boot, again there should

be no need to alter this from the default unless you wish to disable the serial console.

dt-blob.bin by placing this in /boot/ this overrides the default device tree file for the CM3/3+, the

only difference being that GPIO42 is pulled high immediately at start-up (and before the OS is

loaded) to latch the power switch FET on.

mypi.sh creates the below GPIO exports and shortcuts, the demo image has this enabled to run

during the startup sequence

can-reset -> /sys/class/gpio/gpio5/value

lan-disable -> /sys/class/gpio/gpio44/value

mpcie1-reset -> /sys/class/gpio/gpio41/value

mpcie1-wdisble -> /sys/class/gpio/gpio40/value

mpcie2-reset -> /sys/class/gpio/gpio22/value

mpcie2-sierra-reset -> /sys/class/gpio/gpio24/value

mpcie2-wdisble -> /sys/class/gpio/gpio23/value

power-good -> /sys/class/gpio/gpio43/value

power-latch -> /sys/class/gpio/gpio42/value

wd-enable -> /sys/class/gpio/gpio26/value

wd-input -> /sys/class/gpio/gpio27/value

rtc_nvram -> /sys/class/rtc/rtc0/device/ds1307_nvram0/nvram

https://drive.google.com/file/d/1FZLFnooJoLJ8ERhm10IsipobfFo0XbKa

Page 44

Example usage :

echo 1 >/dev/lan-disable

echo 1 >/dev/mpcie1-reset

echo 0 >/dev/mpcie1-reset

cat /dev/power-good

0

echo ‘battery backed up ram’ > /dev/rtc_nvram

cat /dev/rtc_nvram

battery backed up ram

For more information load the mypi.sh file into a text editor.

Page 45

FCC Class A Statement

This equipment has been tested and complies with the limits for a Class A digital device, pursuant to
Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful
interference when the equipment is operated in a commercial environment. This equipment
generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance
with the instruction manual, may cause harmful interference to radio communications. Operation of
this equipment in a residential area is likely to cause harmful interference, in which case the user will
be required to correct the interference at his own expense.

Properly shielded and grounded cables and connectors must be used in order to meet FCC emission
limits. Embedded Micro Technology is not responsible for any radio or television interference caused
by using other than recommended cables and connectors or by unauthorized changes or
modifications to this equipment. Unauthorized changes or modifications could void the user's
authority to operate the equipment.

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two
conditions: (1) this device may not cause harmful interference, and (2) this device must accept any
interference received, including interference that may cause undesired operation

